
MASTER THESIS

Jiří Balhar

Improving Subword Tokenization
Methods for Multilingual Models

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Ing. Tomasz Limisiewicz

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank Tomasz Limisiewicz for the time and effort he put into
supervising this thesis. I am grateful for his guidance and insightful discussions,
which not only shaped the outcome of this thesis but also, hopefully, refined my
research skills.

I would like to thank Ondřej Dušek for all the friendly and encouraging calls
we had before I started working on this thesis.

I am grateful to David Mareček for inspiring me to work on this topic and for
connecting me with Tomasz.

Finally, I would like to thank my family and friends for their unwavering
support and encouragement throughout my long and eventful studies. Special
thanks go to my mother and brother for all the ”gofs”, to my father for sharing
with me his endless curiosity about the world and science, and to my fiancée,
who has always believed in me and supported me in every way possible.

iii

iv

Title: Improving Subword Tokenization Methods for Multilingual Models

Author: Jiří Balhar

Institute: Institute of Formal and Applied Linguistics

Supervisor: Ing. Tomasz Limisiewicz, Institute of Formal and Applied Linguistics

Abstract: In this thesis, we explore the differences between tokenization methods
for multilingual neural language models and investigate their impact on language
model representation quality.

We propose a set of metrics to evaluate the quality of tokenizations. We show that
the metrics capture the differences between tokenizers and that they correlate
with the downstream performance of multilingual language models.

Then, using our metrics, we assess why is the standard tokenizer training on
a multilingual corpus reported to be ineffective for multilingual models. We
investigate design choices such as data size, implementation or alphabet size.
We identify that the issue might be caused by data imbalance and to solve it we
propose to sample tokenizer training data uniformly.

We compare the standard tokenizer training with three proposed methods we
replicate, that aim tomitigate the same reported issues. We show that the principle
behind the improvements of the proposedmethods is the same as with the uniform
sampling.

Our findings offer a deeper understanding of tokenization methods for multilin-
gual models. We propose a methodology and guidelines for training multilingual
tokenizers. Lastly, we show how to achieve improvements in tokenization without
the need for more complex tokenization methods.

Keywords: natural language processing|multilingual language models|subword
tokenization|NLP

v

vi

Contents

1 Introduction 3
1.1 Contributions . 5

2 Background 7
2.1 Multilingual language models 7
2.2 Subword tokenization . 9

2.2.1 Byte Pair Encoding (BPE) 9
2.2.2 Wordpiece . 9
2.2.3 Unigram LM . 10

2.3 Tokenization with many languages 12
2.3.1 Bias towards high-resource languages 13

2.4 Mitigating the language bias . 14
2.4.1 Language-Clustered Vocabularies 14
2.4.2 Determining vocabulary capacity for each language . . 17
2.4.3 Combination of methods for scaling the vocabulary size 20
2.4.4 Other tokenization approaches 22

3 Methodology 23
3.1 Data and languages . 23
3.2 Vocabulary size . 25
3.3 Data sampling . 25
3.4 Tokenizer metrics . 26

3.4.1 Characters per token . 27
3.4.2 Average rank . 28
3.4.3 Jensen-Shannon Divergence 32
3.4.4 Alphabet size and out-of-vocabulary tokens 33

3.5 Evaluation procedures . 34
3.5.1 Types of experiments . 34
3.5.2 Intrinsic evaluation . 34
3.5.3 Extrinsic evaluation . 35

3.6 Evaluation on downstream tasks 37

1

3.6.1 POS . 37
3.6.2 NER . 37
3.6.3 Dependency labeling . 37
3.6.4 NLI . 37
3.6.5 Sentence Retrieval . 38

3.7 Implementation Details . 38
3.7.1 Model pretraining . 38
3.7.2 Model probing . 38
3.7.3 Reproducing the vocabulary balancing methods 39

4 Tokenizer properties affect the performance of language models 45
4.1 Analysis of Tokenizer Properties 45

4.1.1 TokMix tokenizer . 46
4.2 Results . 46

4.2.1 Intrinsic evaluation . 46
4.2.2 Extrinsic evaluation . 47

4.3 Findings . 52

5 Design choices for better multilingual tokenizers 53
5.1 Experiments . 53
5.2 Results . 54

5.2.1 Choice of implementation 54
5.2.2 Data size . 55
5.2.3 Character coverage . 55

5.3 Data imbalance . 57
5.4 Findings . 59

6 Vocabulary balancing methods 61
6.1 Experiments . 61
6.2 Results . 63

6.2.1 Comparison of balancing methods 63
6.2.2 Comparison of balancing methods per language 67
6.2.3 Comparison of balancing methods on downstream tasks 71

6.3 Findings . 76

7 Conclusion 81
7.1 Limitations and future work . 82

Bibliography 85

A Sentencepiece default parameters 93

2

Chapter 1

Introduction

Neural language models have been shown to perform well on a variety of Nat-
ural Language Processing (NLP) tasks and have become a de-facto standard for
tackling tasks that require language understanding. The main advantage of
these pretrained models is that they are able to leverage a large, unannotated
pretraining corpus. After pretraining, we usually need only a fraction of an-
notated, task-specific data for finetuning the model for the task at hand. [1, 2]
Multilingual pretrained models extend the pretrain-finetune paradigm to multiple
languages. By pretraining on a large, multilingual corpus, these models provide
high quality representations even for languages with low amount of training data
(”low-resource languages”), where a dedicated monolingual model might not even
exist. Furthermore, it has been shown that finetuning a multilingual model with
data from a high-resource language makes the model capable to perform the task
at hand in the other languages it has been pre-trained on. This ”cross-lingual
transfer”, a phenomenon specific to multilingual models, allows the usage of the
model for languages where task-specific data is not available. [3, 4]

Even though multilingual models are capable of narrowing the gap between
high-resource languages and low-resource languages, they still suffer from the fact
that the languages are not equally represented in the pretraining data. This leads
to lower performance on the low-resource languages [5]. Furthermore, Conneau
et al. [5] has shown that increasing the number of languages while keeping the
model size fixed leads to a decrease in performance across all languages [5], which
makes the representation of many languages hard.

Tokenization is the crucial first step we take when tackling an NLP problem.
In simple terms, tokenization splits up an input text into a sequence of tokens
— words or parts of words. The tokens are then used as the input for the NLP
methods. Traditionally, the term tokenization referred to the methods of splitting
up an input text into words as a preprocessing step for NLP methods. With the

3

advent of large neural models, we have seen a shift towards using subword tok-
enization methods. The gist of these methods is that they do not stop segmenting
at the word level but continue in splitting words into smaller subword units. This
allows the tokenizers to represent words, that do not occur in training data as a
sequence of more common subword units. Moreover, the vocabulary size of the
tokenizers can be significantly reduced, compared to the word-level tokenization.

It has been shown that the choice of tokenization method has a significant
effect on the performance of the NLP models - whether we talk about monolingual
language models [6], multilingual models [7] or machine translation models [8,
9]. In the context of multilingual language models, the tokenization methods
handle more than a hundred languages at once. This is a challenging task, as
the languages differ in their morphology, writing system and other properties.
Another challenge is, as mentioned before, the fact that the languages are not
equally represented in the training data. Rust et al. [7] have shown that the
low-resource languages are underrepresented in the tokenizer vocabularies. This
leads to performance loss, which can be mitigated by changing the vocabulary to
one with better representation [7].

The unsatisfactory performance of existing multilingual tokenizers on low-
resource languages has led to the development of novel tokenization methods.
Chung et al. [10], Zheng et al. [11], and Liang et al. [12] all propose methods that
aim to improve multilingual vocabularies. Their methods are based on separating
the training corpus into isolated subsets of monolingual corpora or corpora
composed of similar languages only. On the subcorpora, they run the standard
tokenization methods. After creating these language-specific vocabularies, they
merge them back into a single vocabulary. The authors show that using their
methods leads to an overall improved performance, especially for low-resource
languages.

In this thesis, we ask what makes a good tokenization method for multilingual
models, how to measure it and what factors influence it. Moreover, our aim is to
achieve better tokenization for all languages, especially the ones that have been
shown to be underrepresented in the previous multilingual models [7].

We fill a methodological gap by proposing a robust set of metrics for measuring
the properties of tokenization methods in the multilingual setting. Our metrics
measure whether tokenizers effectively represent meaningful, language-specific
tokens in the vocabulary (vocabulary allocation) and whether the tokens they
learn are shared across languages (vocabulary overlap). The questions we address
are: Q1: How do subword tokenizers differ in overlap and allocation of learned
vocabularies? And Q2: Which properties of multilingual tokenizers affect the
language model representation quality?

After we establish our metrics, we address the underresearched question of

4

Q3: What is the reason that the standard tokenizer training method does not work
well in the multilingual setting? To this end, we examine the effect of the training
data size, character coverage, implementation choice and most importantly, the
data imbalance between high-resource and low-resource languages present in the
tokenizer training data. We find that the data imbalance has a significant effect
on the resulting tokenizer and by balancing the training data, we can achieve
better tokenization for the low-resource languages at an overall smaller cost on
the high-resource ones.

Then we turn to the three existing works by Chung et al. [10], Zheng et al.
[11], and Liang et al. [12], which we collectively refer to as ”vocabulary balancing
methods”, proposed for improving tokenization for all training languages. We find
that the three works report empirical improvements of their methods but compare
themselves to highly unbalanced baselines. We, therefore, ask Q4: What is the
effect of using the vocabulary balancing methods on the representation of low-
resource languages? AndQ5: How do the vocabulary balancing methods compare
to the standard method of training the tokenizer on balanced and unbalanced
joint corpus?

Through in-depth analysis, we find that the three methods we reproduce [10,
11, 12] improve tokenization by adjusting the vocabulary allocation between the
languages. We further show, that in our setting, similar results can be achieved by
a simpler method of uniform sampling of languages during the tokenizer training.

1.1 Contributions
The work on this thesis began as a collaboration with Ing. Tomasz Limisiewicz
on the paper “Tokenization Impacts Multilingual Language Modeling”. The paper
was accepted to the ACL Findings 2023 and will be published in July 2023. In this
thesis, we incorporate certain contributions from the paper, including:

• Proposal of metrics for measuring the quality of tokenization for multilin-
gual models.

• Validation of the metrics on a variety of downstream tasks by comparing
different tokenization methods.

The thesis continues in the multilingual tokenization research by:

• Establishing a comprehensive methodology for comparing multilingual
tokenizers on the level of individual languages.

• Investigating the effect of important design choices in the tokenization
training process on the resulting quality of the tokenization.

5

• Reproducing three tokenization methods proposed in the literature aimed
at improving the representation of low-resource languages.

• Examining the working principle behind the reproduced methods and
proposing a simpler alternative for achieving similar results as the more
complex, replicated methods.

The thesis is structured as follows. In Chapter 2, we provide the necessary
background on the multilingual models, tokenization methods and methods for
analysis and improvement of multilingual tokenization. In Chapter 3, we propose
our metrics, explain the evaluation schemes, define a common experimental setup
and describe the implementation and replication details. In Chapter 4, Chapter 5
and Chapter 6, we present our experiments and findings. Finally, in Chapter 7,
we summarize our results.

6

Chapter 2

Background

In this chapter, we describe our related work. We introduce multilingual language
models and the tasks that are used to assess their performance. Then, we explain
the concept of subword tokenization and the standard subword tokenization
methods. Lastly, we show what problems have been identified when using stan-
dard tokenizers in multilingual settings and what methods have been proposed
to mitigate these problems.

2.1 Multilingual language models
In recent years, we have seen a dramatic rise in the use of neural language
models. The premise of these models is the ability to learn unsupervised from
large amounts of unlabeled data.

We focus on studying the properties of multilingual language models fol-
lowing the works of Devlin et al. [1] and Conneau et al. [5], who introduced the
models mBERT1 and XLM-R, respectively. In these works, a Transformer [15]
based multilingual masked language model is pretrained on sentences sampled
from a multilingual corpus of around 100 languages. Training the models on
a multilingual dataset allows the model to learn a shared representation for all
languages. This shared representation can then be used for cross-lingual transfer,
which the authors show on a variety of language understanding tasks.

The multilingual models such as mBERT or XLM-R are composed of the
tokenizer, which splits the input text into tokens, the embedding matrix, which
encodes the tokens into a sequence of word embeddings, and the Transformer
encoder, which transforms the sequence of word embeddings into a sequence of

1We cite the monolingual BERT paper as the mBERT model does not have an associated
publication. In the literature, sometimes the mBERT Github README is cited for the multilingual
variant[14]

7

so-called contextualized embeddings. The contextualized embeddings are then fed
into a task-specific output layer — usually a linear layer with a softmax activation.
The pretraining is done using the masked language modeling task, where some of
the input tokens are stochastically masked out and the model is trained to predict
the masked tokens [1].

In the case of XLM-R [5], the pretraining is performed on data from 100
languages. The tokenization uses a joint vocabulary for all languages and the
model is trained to predict the masked tokens in all languages at once. Even
without any supervision, the model is shown to perform well on a variety of
cross-lingual tasks.

The tasks that are usually used to evaluate the performance of the pretrained
models are the following [16]:

• Question Answering (QA): This task involves predicting an answer to
a question given a context. The context usually consists of a paragraph
of text and the model must locate and return the correct answer from this
text.

• Natural Language Inference (NLI): In this task, the model is given a
pair of sentences and it has to determine the relationship between them:
whether they contradict each other, they are logically consistent, or they
are unrelated.

• Part-of-Speech Tagging (POS): This is a classic task in NLP where each
word in a sentence is assigned a tag that represents its syntactic role (e.g.,
noun, verb, adjective, etc.).

• Named Entity Recognition (NER): NER involves identifying and clas-
sifying named entities in text into predefined categories such as person
names, organizations or locations.

• Cross-lingual Sentence Retrieval: In this task, the model is given a
query sentence in one language and a collection of candidate sentences in a
different language. The goal is to retrieve the sentences from the candidate
pool that are the translation of the query.

These tasks cover a broad spectrum of capabilities, testing basic linguistic
understanding and complex reasoning skills. The performance of the pretrained
model on these tasks provides a comprehensive measure of its cross-lingual
abilities.

8

2.2 Subword tokenization

Subword tokenization methods split up words into subword units, which are then
used as the input tokens for the neural models. This step is generally needed for
pretrained models because including all words in the model vocabulary would
be computationally infeasible. Subword tokenization allows scaling down the
vocabulary size by splitting up rare words into subword units. Another advantage
of subword tokenization over word tokenization is that it allows the model to
generalize to unseen words by composing the embeddings of the subword units.
For word tokenization methods, the missing words are called out-of-vocabulary
tokens and subword tokenization methods mitigate largely this issue. In this
section, we describe the most common subword tokenization methods used in
large multilingual language models.

2.2.1 Byte Pair Encoding (BPE)

The Byte Pair Encoding (BPE) algorithm was introduced by Sennrich, Haddow,
and Birch [17]. They have adapted a compression algorithm by Gage [18] to learn
a subword vocabulary from a corpus. This method was shown to improve the
performance of neural machine translation (NMT) models. BPE was subsequently
used for some of the well-known pretrained models such as GPT-2 [2].

The principle of BPE is to iteratively merge the most frequent byte pairs in
the corpus until the vocabulary size reaches the target size. The algorithm starts
with a vocabulary of only the unique characters used in the input corpus. Using
this initial vocabulary, we then compute the frequency of every character pair
and merge the most frequent pair to create a new subword unit. We recompute
the frequency of the subword unit pairs and repeat the process until the target
vocabulary size is reached.

To tokenize an input text, the BPE algorithm then iteratively merges the pairs
in the same order as they were merged during training. The algorithm stops
when it has merged all pairs in the vocabulary. The output of the algorithm is a
sequence of subword units that can be used as the input tokens for the neural
model. We show the pseudocode of the BPE tokenizer training in Algorithm 1.

2.2.2 Wordpiece

First introduced in [19] the Wordpiece algorithm is a similar technique to BPE.
It is used in the BERT [1] masked language model. The training is based on a
greedy merging of the subword units similar to BPE. Unlike BPE, Wordpiece does
not use the frequency of the subword units to merge them. Instead, it merges the

9

Algorithm 1 The Byte Pair Encoding algorithm.

function BPE(𝐶)
𝑉 ← unique characters in 𝐶
while |𝑉 | < 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 do

𝑝 ← most frequent pair in 𝑉
𝑉 ← 𝑉 ∪ {𝑝}

end while
return 𝑉

end function

pair that maximizes the likelihood of an unigram language model trained on the
corpus.

Contrary to BPE and Unigram LM, there is no official, public implementation
of the original Wordpiece algorithm. There are several implementations of the
algorithm available but these diverge from the original algorithm. For example,
the implementation in the Huggingface library [20] does not use the unigram
language model to merge the subword units. Instead, the training follows the
BPE procedure and only adds prefixes to the subword units to mimic the output
format of the BERT Wordpiece implementation. 2

The implementation in the Tensorflow library follows a different, top-down
approach to creating the subword vocabulary. It starts with a vocabulary of
words and then iteratively splits the words into subword units to reach a target
vocabulary size. 3

2.2.3 Unigram LM

The Unigram LM tokenizer, sometimes referred to as the Sentencepiece tokenizer
after the name of the library that implements it [8], was introduced by Kudo [21].
The motivation for this method is to create a probabilistic model for subword
tokenization. With thismodel, it is then possible to sample different segmentations
of the input text. Training on these varied segmentations empirically improves the
performance of the NMT models. In large language models such as XLM-R, the
Unigram tokenizer is used deterministically, always choosing the most probable
segmentation.

2We refer the reader to the Huggingface Wordpiece implementation https://github.
com/huggingface/tokenizers/blob/291b2e23ae81cf94738835852213ce120152d121/
tokenizers/src/models/wordpiece/trainer.rs

3We refer the reader to the Tensorflow documentation for the Wordpiece tokenizer https:
//www.tensorflow.org/text/api_docs/python/text/WordpieceTokenizer

10

https://github.com/huggingface/tokenizers/blob/291b2e23ae81cf94738835852213ce120152d121/tokenizers/src/models/wordpiece/trainer.rs
https://github.com/huggingface/tokenizers/blob/291b2e23ae81cf94738835852213ce120152d121/tokenizers/src/models/wordpiece/trainer.rs
https://github.com/huggingface/tokenizers/blob/291b2e23ae81cf94738835852213ce120152d121/tokenizers/src/models/wordpiece/trainer.rs
https://www.tensorflow.org/text/api_docs/python/text/WordpieceTokenizer
https://www.tensorflow.org/text/api_docs/python/text/WordpieceTokenizer

Given an input sentence 𝑋, the Unigram LM algorithm finds the most probable
segmentation 𝑥⋆ for the input sentence X:

𝑥⋆ = argmax𝑥∈𝒮 (𝑋)𝑃(𝑥) (2.1)

Where 𝒮(𝑋) is the set of all possible segmentations of the input sentence
𝑋 given a subword vocabulary 𝒱. The probability 𝑃(𝑥) of a segmentation 𝑥 is
computed as a product of subword occurrence probabilities 𝑝(𝑥𝑖):

𝑃(𝑥) =
|𝑥 |
∏
𝑖=1

𝑝(𝑥𝑖) (2.2)

Here, the subword occurrence probabilities cannot be computed using occur-
rence statistics in the corpus since we do not have the final vocabulary yet. Also,
with a given vocabulary, there are usually many possibilities on how to segment
the input sentence from character level granularity to word level. Instead, the
Unigram LM uses the Expectation-Maximization (EM) algorithm to estimate the
marginal subword occurrence probabilities 𝑝(𝑥𝑖) over all segmentation variants.
The EM algorithm maximizes the marginal likelihoodℒwith respect to the latent
subword probabilities 𝑝(𝑥𝑖):

ℒ =
|𝐷|
∑
𝑠=1

log(𝑃(𝑋 (𝑠))) =
|𝐷|
∑
𝑠=1

log(∑
𝑥∈𝒮 (𝑋 (𝑠))

𝑃(𝑥)) (2.3)

By maximizing the marginal likelihood, the Unigram LM considers all possible
segmentations of the input sentences when estimating the subword occurrence
probabilities 𝑝(𝑥𝑖). After optimization of 𝑝(𝑥), it is then possible to compute the
most probable segmentation 𝑥⋆ for a given input sentence 𝑋 using the Viterbi
algorithm.

The training of the Unigram LM works in a top-down fashion. It starts with
a large seed vocabulary of the most frequent substrings (character n-grams).
The default setting is seeding the vocabulary with top 1 000 000 most frequent
character n-grams with 𝑛 ≤ 16. These character n-grams are then iteratively
pruned down to the target vocabulary size in the following way:

1. With a given vocabulary 𝒱, estimate the subword occurrence probabilities
𝑝(𝑥𝑖) using the EM algorithm.

2. Segment the training corpus, sample the best segmentation for every sen-
tence.

3. For each subword 𝑥𝑖 in the vocabulary, compute the loss. The loss is defined
as the decrease in the unigram language model likelihood if the subword is
removed from the vocabulary.

11

4. Keep the top 80% of the subwords with the lowest loss.

5. Repeat this process with the new vocabulary 𝒱 until the target vocabulary
size is reached.

After the training, the Unigram LM algorithm outputs a subword vocabulary
𝒱 and the corresponding marginal subword probabilities 𝑝(𝑥𝑖). Tokenization
of a new input is then done by running the Viterbi algorithm to sample top-n
segmentations of the input sentence.

2.3 Tokenization with many languages
Despite the recent advances in language modeling, the tokenization methods
used in multilingual language models remain mostly unchanged. The first models
trained on multiple languages, such as mBERT [1, 14] and XLM [22] use the same
tokenization methods as their monolingual versions - namely the Wordpiece
and BPE algorithms. Later language models such as XLM-R [5], mBART [23] or
mT5 [24] use the Unigram LM algorithm to learn the subword vocabulary. The
most recent multilingual generative models, such as the 176B parameter BLOOM
model [25] or the XGLM [26] use the Byte-level BPE and Unigram LM algorithms
respectively.

The methods these models use to tokenize the input text are the same as the
ones used in the monolingual models. The main difference is that the tokenization
training algorithm is run on all of pretraining data. This means that the tokenizer
is trained on all languages at once.

As we have pointed out previously, the pretraining data is not evenly dis-
tributed across languages. High-resource languages such as English or Indonesian
may have hundreds of times the amount of training data than low-resource lan-
guages such as Swahili or Amharic.4

To account for the discrepancy in the number of training examples per lan-
guage, the training data is usually subsampled with a bias towards low-resource
languages. This subsampling is performed both for the model pretraining and
the tokenizer training [14, 22].

We describe the subsampling method in detail in section 3.3. In a nutshell, the
subsampling is done by adjusting the probability 𝑝(𝑙) of sampling a line from a
language 𝑙. The probabilities are exponentiated with a factor 𝛼 and renormalized
to sum to 1. With 𝛼 = 0.0, the subsampling is uniform across languages. With

4By high-resource and low-resource languages, we mean languages with generally a lot or
little data available in the pretraining corpora such as Wikipedia dumps or internet crawls. This
may not necessarily correspond to the number of speakers of the language.

12

𝛼 = 1.0, the smoothing has no effect. The usual values chosen for this factor
𝛼 are 0.7 [1]. 0.5 [22] and 0.3 [5]. Throughout this thesis, we will refer to this
subsampling method and the factor 𝛼 often. When we refer to the factor 𝛼, we
mean the factor used for the tokenizer training. We will use a fixed, separate 𝛼
for pretraining data sampling.

2.3.1 Bias towards high-resource languages
As Rust et al. [7] have shown, the bias towards high-resource languages however
still persists, even after subsampling the training data. The authors compare the
performance of the multilingual model mBERT and language-specific variants of
BERT. By finetuning and evaluating on five different tasks across nine typologi-
cally different languages, they show that there is a performance gap between the
multilingual and monolingual models. By further examination they determine
that the performance gap may be explained by 1) pretraining data size and 2) the
choice of tokenizer and its suitability for the tested language.

They show that the performance of mBERT can be improved for a specific
language by switching to a monolingual vocabulary and retraining only the
embedding layer of mBERT. The model with a dedicated vocabulary outperforms
the vanilla mBERT on a variety of tasks, which indicates that the multilingual
vocabulary of mBERT is not optimal.

But what changes when we switch to a monolingual vocabulary and why does
it improve the multilingual model to the point it approaches the performance of
the dedicated monolingual model? Rust et al. [7] propose to look at how often the
tokenizer segments words. They show that for some languages, the multilingual
tokenizer splits words into subwords drastically more often than the monolingual
tokenizer. By changing the tokenizer, we improve the tokenization of the input
text and thus the model performance.

For measuring this, Rust et al. [7] use a metric called fertility introduced by [].
It is defined as the average number of subwords per word. They show that the
fertility of the multilingual tokenizer is higher than the fertility of the monolingual
tokenizer, especially for low-resource languages that are underrepresented in
the training data. By measuring the correlation between the improvement in
performance of the modified models and the improvement in fertility, they show
that there is a statistically significant relationship between the two.

2.4 Mitigating the language bias
As we have described, Rust et al. [7] have firmly established that there is indeed a
disparity between the performance of the multilingual model mBERT and similar

13

monolingual models. They have shown that the disparity is in part caused by the
tokenization method used in the multilingual model.

Other works have addressed this issue by proposing novel tokenization meth-
ods, that aim to improve the vocabulary of the multilingual model and increase
its size to accommodate for all represented languages. The works of Chung et al.
[10], Zheng et al. [11], and Liang et al. [12] all introduce new multilingual models
that use an expanded vocabulary and a novel tokenization method for mitigating
the language bias. Moreover, the authors all claim that the standard recipe of
training a tokenizer on a concatenation of all languages in the training data is not
optimal and that the performance of the model can be improved by using their
method, especially for the low-resource languages.

In the following subsections, we will describe these three methods. First, we
describe the method of Chung et al. [10], which replaces the standard method
with a procedure of clustering similar language corpora together and training
separate cluster-tokenizers before merging these tokenizers together. Then we
describe the method introduced by Zheng et al. [11] which infers the optimal
per-language vocabulary size and then trains separate, monolingual tokenizers
for each language that are then merged. Lastly, we describe the method of Liang
et al. [12], which combines the previous two methods and trains even larger
vocabularies than the previous two methods.

2.4.1 Language-Clustered Vocabularies

Monolingual
Corpora

Train
Individual

Vocabularies

Create
Merged

Vocabulary

Create
Language
Vectors

Cluster
Languages

using
K-means

Train
Cluster-
Specific

Vocabularies

Create Final
Vocabulary

Figure 2.1 Flowchart of the Chung et al. [10] method.

In their paper “Improving Multilingual Models with Language-Clustered
Vocabularies” [10], Chung et al. propose a method to effectively increase the
vocabulary size while mitigating the language bias by using language-clustered
vocabularies. They construct an improved vocabulary by merging together sev-
eral smaller vocabularies that were trained on subsets of the whole, multilingual
training corpus. These smaller vocabularies are constructed by clustering the

14

monolingual corpora based on their similarity and then training a separate vocab-
ulary for each cluster. The authors show that the language-clustered vocabularies
lead to improved performance on low-resource languages.

Figure 2.2 Binary vector representations used for language clustering. Figure taken
from [10].

Their method works by clustering similar languages together and then merg-
ing the cluster-level vocabularies. To cluster the languages using the k-means
algorithm, it is necessary to define an Euclidean vector space with each language
having a representative vector (Figure 2.2). To this end, the authors first train
equally sized vocabularies 𝑉 𝑙 for each language separately using the Unigram LM
method. Then they create a merged vocabulary 𝑉 𝐿 by taking the union of the
vocabularies 𝑉 𝑙. Then, to produce a language vector v𝑙 for each language 𝑙, the
presence of each subword 𝑉 𝐿

𝑖 is checked in the language-specific 𝑉 𝑙 and the value
is set to 1 if the subword is present and 0 otherwise.

v𝑙𝑖 = {
1 if 𝑉 𝐿

𝑖 ∈ 𝑉 𝑙

0 otherwise
(2.4)

With the languages represented as vectors, the k-means algorithm can be
used to cluster them. The authors use the cosine distance as the distance metric
With 104 languages in total, the number of clusters is set to 8. The choice of
𝑘 is determined empirically by running a set of preliminary experiments and
comparing the results on a multilingual question-answering benchmark. The
resulting clusters are shown in Table 2.1.

After the languages are clustered, the cluster-specific vocabularies are trained
using the Unigram LM algorithm on the union of the corpora of the languages
in the cluster. The size of each cluster-specific vocabulary is proportional to the
size of the union of the individual (monolingual) vocabularies in the cluster. This
means that more languages in a cluster lead to a larger vocabulary size assigned
but also if the languages share tokens, this overlap decreases the vocabulary size.
The final vocabulary is then constructed by simply taking the union over the
cluster vocabularies.

The final vocabulary is then compared to the standard recipe of training a

15

Cluster Languages Vocab. size

c1 af, sq, hy, az, bn, bs, my, ceb, hr, en, fi, ka, el, he, hu, id, ga, jv, lv,
lt, ms, min, pl, pa, sco, hbs, sl, su, sw, tl, th, tr, uz, vi, cy, yo

200,306

c2 ar, bpy, fa, azb, ur, lah 40,218
c3 an, ast, eu, ca, gl, io, it, la, lmo, oc, pms, pt, ro, scn, es, war 80,764
c4 ba, be, bg, ce, cv, kk, ky, mk, mn, ru, sr, tg, tt, uk 82,163
c5 bar, br, fr, de, ht, nds, lb, mg, vo 51,653
c6 zh-Hans, zh-Hant, ja, ko 25,528
c7 cs, da, nl, et, is, nb, nn, sk, sv, fy 57,681
c8 gu, hi, kn, ml, mr, ne, new, ta, te 61,683

Table 2.1 Clusters of languages used in [10]. The clusters are numbered from. Table
taken from [10].

Unigram LM vocabulary on a joint corpus5. Because the proposed clustering
method does not have a way of controlling the size of the final vocabulary as
taking the union inadvertently leads to some tokens being merged, the authors
compare the vocabularies by first following the clustering method and arriving
at a 488k subword vocabulary. Then the standard method is followed to train a
vocabulary of the same size.

The authors evaluate the vocabularies intrinsically - by examining the average
number of tokens per sentence, out-of-vocabulary rate and vocabulary overlap
using the Wasserstein-1 distance. By computing the average number of tokens
per sentence for the whole corpus and for each language separately, the authors
show that their method leads to a smaller average number of tokens per sentence
for the whole corpus and further show that the improvements are more prominent
for the low-resource languages. The authors also show that the out-of-vocabulary
rate is lower for the language-clustered vocabulary, again the largest reductions
in the OOV rate are in the low-resource and rare-script languages. Finally, the
authors show on four selected languages that the language-clustered vocabulary
leads to a smaller Wasserstein-1 distance between two similar languages and at
the same time larger distance between two linguistically different languages6.

The clustered vocabulary is then used to train a smaller and bigger multilin-
gual masked language model and evaluated on three distinct, multilingual tasks

5The authors do not define what they mean by following the ”standard recipe”. Based on the
related work the authors replicate closely (mBERT and XLM-R) and compare themselves to, we
assume that the standard recipe is training a Unigram LM tokenizer on the pretraining data after
the exponential subsampling described in 3.1. The authors do mention using the sampling factor
𝛼 = 0.7 for the pretraining data in the Appendix.

6We argue in subsection 3.4.3 that the Wasserstein-1 distance is not a suitable metric for
measuring the distance between two vocabularies. It is a metric defined on probability measures
and not on probability distributions.

16

(question answering, natural language inference and named entity recognition).
The baselines selected are the original mBERT model, XLM-R model and a smaller
reproduction of XLM-R with an increased vocabulary size to match the parameter
size of the introduced model. The authors show improvements for the smaller
model on all three tasks over their baseline reproduction. Then they show the
improvements in QA and NER tasks for the bigger model over the XLM-R and
mBERT baselines.

2.4.2 Determining vocabulary capacity for each language

Monolin-
gual Corpora

Train tokenizers
of different sizes

Compute ALP
for each lan-

guage and size

Combine tokenizers
by maximizing ALP

Final Vocabulary

Figure 2.3 Flowchart of the Zheng et al. method for determining vocabulary capacity.

In the paper “Allocating Large Vocabulary Capacity for Cross-Lingual Lan-
guage Model Pre-Training”, Zheng et al. propose a method for determining the
optimal vocabulary capacity for each language in a multilingual model. Further,
they propose a method for constructing a multilingual vocabulary by combin-
ing monolingual vocabularies so that the optimal capacity is achieved for each
language. In the second part of the paper, the authors propose a method for
accelerating the training of the model with the increased vocabulary size, which
is out of the scope of this thesis.

To determine the optimal vocabulary capacity for each language, the authors
propose a metric called average log probability (ALP).

𝐴𝐿𝑃(𝒟𝑖, 𝑉) =
1
|𝒟𝑖|

|𝒟𝑖|
∑
𝑗=1

|𝑠𝑗|

∑
𝑘=1

log(𝑝𝑢𝑛𝑖(𝑠𝑘𝑗))

where 𝒟𝑖 is the monolingual corpus of language 𝑖, 𝑉 is the vocabulary and
𝑝𝑢𝑛𝑖(𝑠𝑘𝑗) is the unigram probability of the 𝑘-th token in the 𝑗-th sentence. The
authors show that the average log probability positively correlates with the
downstream task performance on a series of experiments with four distinct
languages. They show this correlation by training a series of tokenizers with

17

increasing vocabulary size. Then they measure the ALP on these tokenizers,
pretrain monolingual models for every vocabulary size and every language and
evaluate them on two word-level classification tasks. For illustration, we show
the correlation between ALP and F1 score for the NER task in Figure 2.4.

Figure 2.4 F1 score on NER task with different vocabularies versus their ALP on the
monolingual corpus. Figure taken from [11]

Although the authors report that the vocabulary size itself is also a good
predictor of downstream task performance, the authors argue that ALP correlates
better with the downstream task performance and is therefore a better metric for
determining the optimal vocabulary capacity.

To efficiently allocate the tokenizer vocabulary, the authors hypothesize that
the pretraining size of the corpora must be also taken into account. The reason
is that for low-resource languages, it is better to allocate fewer tokens as the
language model does not have enough data to learn robust representations for
the low-frequency tokens. In the end, the authors propose a greedy vocabulary
allocation algorithm VoCap that maximizes the following objective:

argmax
𝑡1,…,𝑡𝑁

𝑁
∑
𝑖=1

𝑞𝛽𝑖 ALP (𝐷𝑖, 𝑉 𝑖
𝑡𝑖) s.t. |

𝑁
⋃
𝑖=1

𝑉 𝑖
𝑡𝑖 | = 𝑇

Where 𝑁 is the number of languages, 𝑞𝑖 is the probability of sampling training
instances from i-th language during pre-training (we describe the per-language
sampling in section 3.3), 𝛽 is a hyperparameter that controls the importance of
the corpus size and 𝑇 is the total vocabulary capacity.

The VoCap algorithm works by precomputing a series of tokenizer vocabular-
ies with vocabulary sizes from 1 000 to 50 000 for every language and computing
the ALP metric for each of them. Then it iteratively builds the final vocabulary
by:

18

Figure 2.5 ALP improvement of VoCap tokenizers over the standard tokenizers with
vocabulary sizes 250 000 and 500 000. Figure taken from [11].

1. Selecting the language with the highest potential ALP increase compared
to the previous selected size.

2. Taking the tokenizer with the increased vocabulary size for the selected
language.

3. Adding the tokenizer vocabulary to the final vocabulary.

After reaching the target size, the algorithm halts and returns the vocabulary
constructed by the iterative merging.

With the VoCap algorithm, Zheng et al. then create new tokenizers with
vocabulary sizes 250 000 and 500 000 on a multilingual corpus with 86 languages.
The authors compare the performance of the VoCap tokenizers with baseline
tokenizers trained directly on the multilingual corpus. The multilingual corpus is
again subsampled before the standard tokenizer training following Devlin et al. [1]
and Lample and Conneau [22] with an exponential smoothing factor of 𝛼 = 0.7.

The standard and VoCap tokenizers are compared using the ALP metric. The
results are shown in Figure 2.5. The authors show that the VoCap tokenizers
improve the ALP metric for the 500 000 vocabulary size over the baseline across
all languages. The improvement is more prominent for low-resource and mid-
resource languages compared to high-resource languages. At the same time the
difference between the standard tokenizers with vocabulary sizes 250 000 and
500 000 is negligible.

To validate these results, the authors then pretrain masked language models
using the standard and VoCap tokenizers and conduct experiments on tasks from

19

the XTREME benchmark [27]. The comparison is done on natural language infer-
ence, paraphrase identification, part of speech tagging, named entity recognition
and question answering. The averaged results over all tasks suggest that the
VoCap tokenizers outperform the standard tokenizers by 0.4 percentage points
for the 250 000 vocabulary size and 1.7 percentage points for the increased 500 000
vocabulary size. When investigating further the results for XNLI and NER, the
authors show that improvements are gained in the low-resource and mid-resource
languages. This is consistent with the ALP improvement results.

2.4.3 Combination of methods for scaling the vocabulary
size

In the paper XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked
Language Models, Liang et al. introduce a new multilingual language model with a
1M token vocabulary. To create this large vocabulary, the authors propose a new
tokenization method by combining the two methods described in the previous
sections 2.4.1 and 2.4.2.

The proposed method consists of the following steps: (1) training monolin-
gual tokenizers for each language using Unigram LM, (2) computing language
vectors using negative log probability of the tokens, (3) finding a clustering of the
languages with the k-means algorithm using the language vectors, (4) finding an
appropriate vocabulary size for each cluster using the ALP from Zheng et al. [11],
(5) training a tokenizer for each cluster using Unigram LM and (6) combining the
tokenizers into a single multilingual tokenizer.

As we can see, the overall method is similar to Chung et al. [10] with small
adjustments. More concretely, the authors train larger monolingual Sentencepiece
Unigram tokenizers in the first step, use a different method for computing the
language vectors in the second step and use the ALP metric for finding the
appropriate vocabulary sizes in the fourth step. We now describe each altered
step in more detail.

For training the monolingual tokenizers, the authors suggest using a larger
vocabulary size of 30 000 instead of 8 000 used in Chung et al. [10].

The language vectors in Chung et al. [10] are binary with 1 corresponding to
each subword present in the vocabulary of a given language. In contrast, Liang
et al. [12] propose to use the negative log probability of the subwords as the
language vectors (see Figure 2.6). The logits are the output of the Unigram LM
tokenization method as explained in subsection 2.2.3. The authors argue that
”weighting each token by its likelihood better represents the lexical fingerprint of
a language”.

Lastly, the authors argue that the method of Chung et al. [10] assigns deficient

20

Figure 2.6 Negative log probability vector representations used for language clustering.
Compare to Figure 2.2. Figure taken from [12].

vocabulary sizes to some of the clusters, pointing out an example of a cluster
containing Chinese and Japanese with a capacity of 28,593 tokens. The authors
propose to use the ALP to allocate appropriate vocabulary sizes to each cluster.
The exact method is unclear from the paper but to the best of our understanding,
the method followed by the authors was to use the publicly available code and
monolingual tokenizers from Zheng et al. [11] and re-run the VoCap algorithm
on their CC100 data instead of Wikipedia data. In this way, the authors obtained
the optimized vocabulary sizes for the CC100 dataset for each language covered
by Zheng et al. [11]. Any language that was not included in the public implemen-
tation of VoCap was set to a fixed size of 2000 vocabulary size. The optimized
vocabulary sizes for each language were then summed according to the cluster
assignments to get the cluster vocabulary sizes. To achieve a specified target
vocabulary size (500k, 1M, 1.5M, 2M), the authors then take the cluster vocabu-
lary sizes and rescale them so that the sum equals the target size. As noted in
subsection 2.4.1, the union of the vocabularies is not guaranteed to be equal to the
target size because of the overlapping tokens between the cluster vocabularies.
The authors report that the 1M vocabulary has an actual size of 901 629 tokens.

After creating the vocabulary, the authors then train a large multilingual
masked language model based on XLM-R following Conneau et al. [5].

They run a shorter preliminary training with differently sized vocabularies
(1M and 1.5M) and compare the performance of their proposed method to the
original clustering method by Chung et al. [10] scaled to 1M vocabulary size and
XLM-R with the original tokenization method scaled to 1M vocabulary size. They
compare the results on the XNLI task and show that their method outperforms
the other two methods by 1.11 and 1.34 percentage points respectively.

After the preliminary run, they fully train the final model with the 1M vocab-
ulary size on 2.5TB of data and compare the performance to the original XLM-R
model with 250k vocabulary size. They show that their model significantly out-
performs the original XLM-R model on a variety of language understanding
tasks.

21

2.4.4 Other tokenization approaches
Several other works propose different methods for tokenization. In the thesis, we
focus on methods that propose novel tokenization methods. There are however
different approaches for text representation that aim to improve the performance
of multilingual language models. We briefly describe some of them in this section.

Instead of costly pretraining of newmodels, Wang et al. [28] propose to extend
the vocabulary of mBERT with new tokens. By adding new tokens, they lower the
out-of-vocabulary rate for selected languages and in turn, improve performance
on a variety of tasks.

One possible avenue for mitigating problems of tokenization is to get rid
of tokenization altogether. Clark et al. [29], Tay et al. [30], and Xue et al. [31]
propose different methods for skipping the input tokenization step and modifying
the Transformer architecture to effectively process byte sequences. As Mielke
et al. [32] notes, however, these methods come with their own sets of biases and
limitations such as lower performance or higher computational demands.

Another direction of research is focusing on the visual representation of char-
acters and subwords [33, 34, 35]. For example, logographic languages encode
semantics in the shapes of the logograms, which is a source of additional informa-
tion not present in the Unicode representation of the characters. The visual text
representation models are also more robust to spelling errors and other artifacts.

22

Chapter 3

Methodology

In this chapter, we introduce the methodology for experiments conducted in this
thesis. We define the data and languages used in our experiments. We also define
a fixed vocabulary size to be comparable with related work. We introduce the
important data sampling method utilized in Devlin et al. [1] and Conneau et al. [5]
we use frequently for our experiments. Then we introduce our proposed metrics
for measuring the vocabulary allocation and vocabulary overlap of a tokenizer
and compare them to existing metrics used in the literature. We introduce the
types of experiments we conduct — overall, we train different tokenizers and
evaluate them against our metrics. Subsequently, we also use the tokenizers to
train masked language models to verify that our metrics are useful for assessing
the tokenizer quality for use in language models. We also describe in detail the
evaluation procedures and all evaluation settings and tasks. Finally, we describe
our reproduction of the vocabulary balancing methods by Chung et al. [10], Zheng
et al. [11], and Liang et al. [12].

3.1 Data and languages

For training the vocabularies and the masked language models we follow our
related work [5, 10, 12] and use the CC100 dataset. The other common choice
is using Wikipedia data [1, 11] but the CC100 has been shown to improve low-
resource languages such as Swahili and Urdu [5].

This unlabeled, multilingual dataset was created from the Common Crawl
corpus using an automatic pipeline. The data was deduplicated and language-
identified. Then for each monolingual corpus the data was filtered using Kneser-
Ney language models trained on Wikipedia. Documents with perplexity under
a certain language-specific threshold were filtered out. The data processing
pipeline is described in detail in Wenzek et al. [36]. A reproduction of the dataset

23

Language Language code Script Language Family Data Size

English en Latin Indo-European 214 431 709
Vietnamese vi Latin Austroasiatic 99 914 417
Russian ru Cyrillic Indo-European 80 356 837
French fr Latin Indo-European 40 198 805
German de Latin Indo-European 38 962 501
Spanish es Latin Indo-European 37 190 928
Thai th Thai Kra–Dai 31 773 751
Bulgarian bg Cyrillic Indo-European 22 476 465
Hebrew he Hebrew Afroasiatic 19 996 649
Chinese-simplified zh-Hans Chinese Sino-Tibetan 19 655 905
Greek el Greek Indo-European 19 773 458
Turkish tr Latin Turkic 11 852 489
Arabic ar Arabic Afroasiatic 11 421 836
Hindi hi Devanagari Indo-European 10 326 155
Tamil ta Tamil Dravidian 6 653 017
Georgian ka Georgian Kartvelian 3 108 473
Urdu ur Arabic Indo-European 2 669 302
Telugu te Telugu Dravidian 1 716 206
Marathi mr Devanagari Indo-European 1 206 981
Swahili sw Latin Niger-Congo 1 232 106

Table 3.1 List of languages used in the experiments. Language sizes are reported in
lines for the 10% subsample of the whole CC100 corpus.

is available at https://data.statmt.org/cc-100/.

For the purposes of this thesis, we select 20 out of 116 languages following
Limisiewicz, Balhar, and Mareček [13] and download 10% of the data for each
language. The reason for selecting a subset of the languages available and using
only part of the data is our computational constraints. First, by limiting the
amount of data, we can train the models faster. Second, by limiting the number
of languages, we can scale down the vocabulary size. Because a large amount of
the model parameters is in the embedding matrix, the vocabulary size has a large
impact on the model size. This in turn, affects the training time and the memory
requirements. We use the same diverse set of 20 languages for all experiments in
this thesis.

The exact choice of the language subset is motivated by the downstream
evaluation datasets. We use the 15 languages covered by XNLI and add 5 more.
The languages are selected to cover a wide range of language families and scripts.
The full list of languages is shown in Table 3.1.

24

https://data.statmt.org/cc-100/

3.2 Vocabulary size
We use a fixed vocabulary size of 120 000 tokens for representing the selected 20
languages. We have chosen this vocabulary size to create a comparable setup to
our related work while saving our computational resources. The related work we
replicate in this thesis uses the following vocabulary sizes:

• Chung et al. [10] use a vocabulary size of 488 000 tokens for 104 languages.
This amounts to 4 692 tokens per language.

• Zheng et al. [11] use a vocabulary size of 500 000 tokens for 86 languages,
which is 5 814 tokens per language.

• Liang et al. [12] use a vocabulary size of 901 629 tokens for 104 languages,
which is 8 670 tokens per language.

The listed works propose to extend the vocabulary size over the previous
models mBERT and XLM-R. For comparison, we also list the vocabulary size of
these models:

• Conneau et al. [4] (XLM-R) use a vocabulary size of 250 000 tokens for 104
languages, which is 2 400 tokens per language.

• Devlin et al. [1] (mBERT) use a vocabulary size of 110 000 tokens for 104
languages, which is 1 058 tokens per language.

In our case, the vocabulary size of 120 000 tokens representing 20 languages
amounts to 6 000 tokens per language. This is more than the vocabulary size of
XLM-R and mBERT, but similar to the vocabulary size of the replicated works.

3.3 Data sampling
As explained in the Chapter 1 and shown in Table 3.1, the training data available
for each language differs significantly in the total size (counted as the number of
lines). For training the multilingual language model and associated tokenizer, it is
generally advised to address this data imbalance by oversampling the languages
with a low amount of data available (low-resource languages) and undersample
the languages with high amounts of data (high-resource languages). One possible
balancing procedure proposed by Devlin et al. [1] and Conneau et al. [5] is
parametrized by the exponent 𝛼 which we will now describe.

We assume we have 𝑁 monolingual corpora 𝐶𝑙 with languages 𝑙 ∈ 𝐿. Each
corpus with the language 𝑙 ∈ 𝐿 has a different number of lines 𝑁𝑙 = |𝐶𝑙|. Then, the
probability of sampling a line from the concatenation of all corpora ∪𝑙∈𝐿𝐶𝑙 is:

25

𝑝(𝑙) =
𝑁𝑙

∑𝑙′∈𝐿 𝑁𝑙′
(3.1)

To ensure that the low-resource languages are not underrepresented in the
training data, wemodify this probability distribution using an exponential smooth-
ing parameter 𝛼:

𝑝′(𝑙) =
𝑝(𝑙)𝛼

∑𝑙′∈𝐿 𝑝(𝑙′)𝛼
(3.2)

For 𝛼 = 0.0 we get a uniform distribution over the languages, for 𝛼 = 1.0 we
get the original distribution.

For pretraining the language models, we use 𝛼 = 0.3 as suggested by Conneau
et al. [4]. For training the tokenizers, we always specify the alpha as a parameter
of the tokenizer training procedure.

3.4 Tokenizer metrics
In this section we introduce the metrics that we use to evaluate the tokenizers.
By measuring the tokenizers we would like to explore two questions. First,
we would like to analyse how the tokenizers differ between each other. How
granular is the segmentation given an example text? And how much are the
tokens shared between the languages? Second, using the observed differences
between tokenizers, we would like to analyse how they influence the multilingual
language models, that are trained using the tokenizers.

When assessing the multilingual tokenizers, we also want to focus not only
on the overall properties but also investigate the quality of tokenization for the
individual languages. This gives us a better understanding of the tokenizers and
allows us to compare the tokenizers with each other given a target language. For
this purpose, we will use monolingual evaluation corpora for each language. The
metrics we define will be therefore functions of the tokenizer 𝜏 and the corpus 𝐶𝑙
with the selected language 𝑙.

We introduce three metrics - average rank, characters per token and Jensen-
Shannon divergence. The first two metrics aim to measure the ”vocabulary
allocation” of the tokenizer — the degree to which is the given language repre-
sented in the vocabulary. The third metric measures the ”vocabulary overlap”
between a given pair of languages — the degree of token sharing between two
languages.

To define the metrics formally, we use the following notation [37]. Let Σ be
a set of characters we call the alphabet. In our context, the alphabet is the set
of all valid Unicode characters. We call a string 𝑠 ∈ Σ∗ a line or equivalently a

26

sentence. Finally, we call a multiset of lines 𝐶𝑙 = {𝑠1, … , 𝑠𝑁𝑙} ⊂ Σ∗ a corpus of
size 𝑁𝑙. The 𝑙 ∈ 𝐿 denotes a language of the corpus from a set of languages 𝐿.
Next, we denote the set 𝑉𝜏 ⊂ Σ∗ as the vocabulary of a tokenizer 𝜏. The tokenizer
𝜏 ∶ Σ∗ → 𝑉 ∗

𝜏 is a mapping from a line 𝑠 ∈ Σ∗ to a sequence of tokens 𝜏 (𝑠) ∈ 𝑉 ∗
𝜏 . We

also denote 𝜏 (𝐶𝑙) = {𝜏(𝑠), 𝑠 ∈ 𝐶𝑙} the tokenization of the corpus 𝐶𝑙. We denote the
length of a sequence of characters or tokens 𝑠 as |𝑠|. Finally, we denote the number
of occurrences of a token 𝑡 ∈ 𝑉𝜏 in a corpus 𝐶𝑙 as cnt(𝑡, 𝐶𝑙) and the empirical
probability of the token 𝑡 in the corpus 𝐶𝑙 as:

𝑝(𝑡, 𝐶𝑙) =
cnt(𝑡, 𝐶𝑙)

∑𝑡′∈𝑉𝜏 cnt(𝑡
′, 𝐶𝑙)

If the context is clear, we will omit the corpus 𝐶𝑙 and write cnt(𝑡) and 𝑝(𝑡).

3.4.1 Characters per token

Figure 3.1 Example of CPT metric. Figure from the paper poster [13]

The first metric we propose is the average number of characters per token
(CPT). The motivation for this metric is that we want to measure how granular the
tokenization for a given language is. If the tokenizer splits the words into many
tokens, the average number of characters per token will be low. On the other
hand, if the tokenizer does not split the words, the average number of characters
per token will be high. We hypothesize, that longer tokens are better for the
language models, because they potentially carry more meaning. The extreme case
of this metric is the character-level tokenization, where the average number of
characters per token is 1. In this case the model would need to learn to reconstruct
the words from the characters.

The metric is defined as follows. Given a tokenizer 𝜏 and a language corpus 𝐶𝑙,
we first tokenize the corpus using the tokenizer 𝜏. Then we compute the average
number of characters per token in the tokenized corpus:

𝐶𝑃𝑇 (𝜏 , 𝐶𝑙) =
∑𝑠∈𝐶𝑙 |𝑠|

∑𝑠∈𝐶𝑙 |𝜏 (𝑠)|
(3.3)

The metric is illustrated in Figure 3.1.

27

The CPT metric is connected to the average tokenized length (or sequence
length, or description length) metric used in Chung et al. [10] and Liang et al. [12].
These works suggest using the metric to compare whether one tokenizer splits a
selected low-resource language into more tokens compared to another tokenizer.
The average tokenized length is defined as the average number of tokens per
sentence:

𝑇𝐿(𝜏 , 𝐶𝑙) =
∑𝑠∈𝐶𝑙 |𝜏 (𝑠)|

|𝐶𝑙|
(3.4)

The tokenized length can be expressed as the product of the reciprocal of CPT
metric and a ”average sentence length” constant, which is corpus-specific and
not dependent on the tokenizer:

𝐶𝑃𝑇 (𝜏 , 𝐶𝑙)−1 ⋅
∑𝑠∈𝐶𝑙 |𝑠|

|𝐶𝑙|
=

∑𝑠∈𝐶𝑙 |𝜏 (𝑠)|

∑𝑠∈𝐶𝑙 |𝑠|
⋅
∑𝑠∈𝐶𝑙 |𝑠|

|𝐶𝑙|
=

∑𝑠∈𝐶𝑙 |𝑠|

|𝐶𝑙|
= 𝑇𝐿(𝜏 , 𝐶𝑙) (3.5)

Even though the metrics are equivalent, we use the CPT metric instead of the
average tokenized length because we believe it is more intuitive (higher CPT is
better) and it is easier to interpret thanks to the lower bound of 1 character per
token.

CPT is also similar to another metric used in the literature — the word fertility
metric used in Rust et al. [7]. The word fertility is defined as the average number
of tokens per word. We can see that the same argument as in Equation 3.5 can be
made about fertility and CPT. If we consider a corpus-specific constant ”average
number of characters per word”, we see that fertility and CPT are proportional.
The fertility metric has been shown to correlate with downstream performance
and therefore seems to be a good metric. The downside of this metric is that it
is not language-agnostic because it is not defined for languages without word
delimiters such as Chinese or Thai.

3.4.2 Average rank

Figure 3.2 Example of AR metric. Figure from the paper poster [13]

28

Another metric we use for comparing the tokenizers is Average Rank (AR).
The motivation for this metric is that we want to measure how many tokens are
effectively used in the vocabulary for representing the corpus. Each language
will have some amount of tokens dedicated to it in the vocabulary and our goal
is to measure this allocation. We also want to take into account how frequently
are these tokens used. We hypothesize that very frequent and very rare tokens
are not as useful for the language models as the high-frequency tokens might
be too ambiguous and low-frequency tokens might not have enough training
examples to learn from [9]. We therefore propose to measure the average rank (the
position of the token sorted by frequency) of tokens in the empirical probability
distribution over a monolingual corpus.

Given a tokenizer 𝜏 and a language corpus 𝐶𝑙, we first tokenize the corpus
using the tokenizer 𝜏. Then we compute the empirical probability of the tokens
in the tokenized corpus. We sort the tokens by their probability and assign them
ranks from 1 to |𝑉𝜏|. The average rank is then the weighted average of the ranks
of the tokens, where the weights are the probabilities of the tokens:

𝐴𝑅(𝜏 , 𝐶𝑙) = ∑
𝑡∈𝑉𝜏

𝑟𝑎𝑛𝑘(𝑡, 𝜏 (𝐶𝑙)) ⋅ 𝑝(𝑡, 𝐶𝑙) (3.6)

The metric is illustrated in Figure 3.2. Higher AR signals that the vocabulary
contains higher number of tokens used for tokenizing given language. Moreover
with high AR we can expect that the tokens are distributed more uniformly.

Average Rank and Average Log Probability

Now, we would like to address how our average rank compares to different metrics
used in the literature.

First, we examine the average log probability (ALP) defined in Zheng et al.
[11]. This metric is proposed for the same purpose as our AR metric. It is also
said to measure language-specific vocabulary capacity and the authors claim that
it is ”penalized by the subword units with low-frequency”. Surprisingly, we can
show that the ALP metric is equivalent to the product of negative entropy and
average tokenized length.

Given a monolingual corpus 𝐶𝑙 and a tokenizer 𝜏, the ALP is defined as [11]:

𝐴𝐿𝑃(𝜏 , 𝐶𝑙) =
1
|𝐶𝑙|

∑
𝑠∈𝐶𝑙

∑
𝑡∈𝑠

log 𝑝(𝑡) (3.7)

We can simplify the original formula 3.7 by observing that we add up the
log token probabilities log 𝑝(𝑡) repeatedly by summing over all sentences and all
tokens in sentences. Consequently, the sum can be simply expressed in terms of
token occurrence multiplied by the log token probability. We denote 𝑉𝜏 the set of

29

all tokens in the tokenizer vocabulary 𝜏 and cnt(𝑡) the number of occurrences of
token 𝑡 in the corpus 𝐶𝑙. We can rewrite the ALP metric as follows:

𝐴𝐿𝑃(𝜏 , 𝐶𝑙) =
1
|𝐶𝑙|

∑
𝑡∈𝑉𝜏

cnt(𝑡) log 𝑝(𝑡) (3.8)

From here we can, interestingly, derive a relationship between token length
(Equation 3.4), information entropy and ALP metric as follows:

𝐴𝐿𝑃(𝜏 , 𝐶𝑙) =
1
|𝐶𝑙|

∑
𝑡∈𝑉𝜏

cnt(𝑡) log 𝑝(𝑡) (3.9)

= 1
|𝐶𝑙|

∑
𝑡∈𝑉𝜏

∑𝑡′∈𝑉𝜏 cnt(𝑡
′)

∑𝑡′∈𝑉𝜏 cnt(𝑡
′)
cnt(𝑡) log 𝑝(𝑡) (3.10)

=
∑𝑡′∈𝑉𝜏 cnt(𝑡

′)

|𝐶𝑙|
∑
𝑡∈𝑉𝜏

cnt(𝑡)
∑𝑡′∈𝑉𝜏 cnt(𝑡

′)
log 𝑝(𝑡) (3.11)

=
∑𝑡′∈𝑉𝜏 cnt(𝑡

′)

|𝐶𝑙|
∑
𝑡∈𝑉𝜏

𝑝(𝑡) log 𝑝(𝑡) (3.12)

=
∑𝑠∈𝐶𝑙 |𝜏 (𝑠)|

|𝐶𝑙|
∑
𝑡∈𝑉𝜏

𝑝(𝑡) log 𝑝(𝑡) (3.13)

= 𝑇𝐿(𝜏 , 𝐶𝑙) ⋅ (−𝐻(𝑝)) (3.14)

In step 3.13 we express the total number of tokens in corpus 𝐶𝑙 by counting
over all sentences 𝑠 ∈ 𝐶𝑙 and summing the number of tokens in each sentence
|𝜏 (𝑠)|.

By our examination of ALP, it becomes evident that the metric is a composition
of two already well-established metrics. Interestingly, these metrics are multiplied
together, even though they seem to be inversely related. On the one hand, shorter
tokenized sentence lengths are generally considered to be better (as a shorter
tokenized sentence length means longer and more meaningful tokens), while
on the other, a higher entropy is often deemed more desirable (a more uniform
distribution is preferable to a more skewed one). One interpretation could be
that high ALP is achieved when the vocabulary consists of a large number of
short tokens that are similarly useful (have a uniform distribution). The authors,
unfortunately, do not provide an analysis or discussion to shed light on this aspect.

In comparison to our average rank, ALP measures the number of used tokens
and the uniformity of the distribution thanks to the entropy in the equation. On
the other hand, the ALP metric is punished by the length of the tokens, which
is counterintuitive. We therefore stick to our AR metric, which we deem more
intuitive and does not suffer from this issue.

30

Average rank and entropy

Next, a natural question is what is the difference between average rank and
information entropy. The entropy of the tokenized corpus is defined as follows:

𝐻(𝜏 , 𝐶𝑙) = −∑
𝑡∈𝑉𝜏

𝑝(𝑡) log 𝑝(𝑡) (3.15)

Recall that we define average rank as follows:

𝐴𝑅(𝜏 , 𝐶𝑙) = ∑
𝑡∈𝑉𝜏

𝑟𝑎𝑛𝑘(𝑡) ⋅ 𝑝(𝑡) (3.16)

We see that entropy provides similar characteristics as AR in the sense that
more uniform distributions result in higher entropy and more tokens dedicated to
a language also result in higher entropy. As we can see, the formula for entropy
and AR differ only in the sign and one of the multiplied terms. The sign is not
important as we are only interested in the relative values of the metrics. The
difference in the multiplied terms is that AR uses the rank of the token, while
entropy uses the log probability of the token.

To proceed with the analysis, we will assume that the tokens follow Zipf’s
distribution. This is a reasonable assumption for natural language data. The
Zipf’s distribution is defined as follows:

𝑝𝑧𝑖𝑝𝑓(𝑡) =
1

𝑟𝑎𝑛𝑘(𝑡) ⋅ 𝐻|𝑉𝜏|
(3.17)

Where 𝐻|𝑉𝜏| is the |𝑉𝜏|-th harmonic number used as a normalization constant.
Taking the logarithm of 𝑝𝑧𝑖𝑝𝑓(𝑡), we get:

log 𝑝𝑧𝑖𝑝𝑓(𝑡) = − log 𝑟𝑎𝑛𝑘(𝑡) − log𝐻|𝑉𝜏| (3.18)

Now if we plug in the log probability of the token into the entropy formula
and leave out the constant as we are interested only in the relative values with a
fixed vocabulary size, we get:

𝐻(𝜏 , 𝐶𝑙) ∝ ∑
𝑡∈𝑉𝜏

𝑝(𝑡) log 𝑟𝑎𝑛𝑘(𝑡) (3.19)

We see that under the Zipfian assumption, the entropy may be viewed as
an ”average log rank”. We empirically check this by computing average rank,
average log rank, and entropy the Figure 3.3.

This provides us with an intuitive understanding of the difference between the
two metrics. AR and entropy can be viewed as being related, with the difference
being in their sensitivity to the rank of the tokens. AR, being directly related to

31

7 8
Entropy

6.5

7.0

7.5

8.0

8.5

En
tro

py

4 5 6
Average Log Rank

6.5

7.0

7.5

8.0

8.5

En
tro

py

1000 2000
Average Rank

6.5

7.0

7.5

8.0

8.5

En
tro

py

Figure 3.3 We compute the average rank, average log rank, and entropy for different
tokenizers and languages. Then we plot each metric against entropy. We see that entropy
and average log rank are similar, which supports our assumption that the tokens follow
Zipf’s distribution.

rank, is more sensitive to changes in probability in lower-frequency tokens. This
is because the weighted average used in AR is more affected by linear rank values
than the logarithmic rank values used in entropy calculation.

3.4.3 Jensen-Shannon Divergence

.

Figure 3.4 Jensen-Shannon Divergence. Figure from the paper poster [13]

The Jensen-Shannon Divergence (JSD) is a metric that measures the similarity
between two probability distributions. It is defined as follows:

𝐽𝑆𝐷(𝑝, 𝑞) = 1
2
⋅ (𝐾𝐿(𝑝||𝑚) + 𝐾𝐿(𝑞||𝑚)) (3.20)

Where𝑚 = 1
2 ⋅ (𝑝+𝑞) is the midpoint distribution and 𝐾𝐿(𝑝||𝑞) is the Kullback-

Leibler divergence.

𝐾𝐿(𝑝||𝑞) = ∑
𝑡∈𝑉𝜏

𝑝(𝑡) log
𝑝(𝑡)
𝑞(𝑡)

(3.21)

32

We use JSD for the analysis of an overlap between two languages given a
tokenizer. Tokenization of two monolingual corpora 𝐶𝑙1 and 𝐶𝑙2 with the same
tokenizer 𝜏 results in two probability distributions over the vocabulary 𝑉𝜏. To
compute the dissimilarity between the languages, we compute the JSD between
those distributions 𝐽𝑆𝐷(𝑝𝜏 (𝐶𝑙1), 𝑝𝜏 (𝐶𝑙2)).

The JSD is a symmetric metric that is bounded between 0 and 1. Low JSD
means that the two distributions are similar, high JSD means that the two distri-
butions are different. We say that there is a high vocabulary overlap between two
languages if the JSD is low and vice versa. The metric is illustrated in Figure 3.4.

Overlap in tokenization has been studied in Wu and Dredze [38], although the
metric used there was the absolute number of overlapping tokens. The benefit
of using Jensen-Shannon divergence for measuring the vocabulary overlap is
that the metric takes into account the occurrence of the shared tokens. This is
important because some of the overlapping tokens may be for example infrequent
emojis or other special tokens that do not carry much information about the
language nor the actual overlap in more meaningful tokens.

Chung et al. [10] uses theWasserstein distance (or the ”earthmover’s distance”)
to measure the overlap between two languages. We believe this is not a suitable
metric as the Wasserstein distance is defined for probability measures (probability
distributions on a given metric space). The tokenizer vocabulary has no metric
structure and the authors of the article do not specify how they define the metric
on the vocabulary. It is therefore unsuitable to use the Wasserstein distance for
measuring the overlap between two tokenizers.

3.4.4 Alphabet size and out-of-vocabulary tokens
Among themetrics we propose, we alsomeasure the alphabet size of the tokenizers
defined as the number of tokens of length 1 in the vocabulary:

Alphabet = |{𝑡 ∈ 𝑉𝜏, |𝑡 | = 1}| (3.22)

We also measure the number of out-of-vocabulary (OOV) tokens in the corpus.
The UNK token is a special token that used to represent all the tokens that are
not present in the vocabulary 𝑉𝜏. We measure the number of UNK tokens in the
corpus as follows:

OOV = ∑
𝑡∈𝜏 (𝐶𝑙)

1𝑡=<UNK> (3.23)

Where 1𝑡=<UNK> is an indicator function that is 1 if the token is UNK and
0 otherwise. Because we use the same validation set for all the tokenizers, we
can compare the number of OOV tokens directly between the tokenizers. Note

33

that in the literature, the out-of-vocabulary tokens are measured as a OOV rate
(number of OOV tokens divided by the total number of tokens in the corpus).
We do not use this metric because the values of the OOV rate are small for the
subword tokenizers and therefore slightly harder to compare. We acknowledge
that this choice is specific to our setting where the validation set is the same for
all the tokenizers. In the general case, the OOV rate is a better metric.

3.5 Evaluation procedures
In this section, we introduce the evaluation procedures that we use to evaluate the
tokenizers. We first describe the types of experiments we do with the tokenizers.
Thenwe explain the intrinsic evaluation procedure. Thenwe describe the extrinsic
evaluation procedure.

3.5.1 Types of experiments
Generally, we can distinguish between two types of experiments we do with the
tokenizers we compare in this thesis. The first type of experiment is comparing
different tokenizers to each other using the evaluation metrics we introduced in
the previous section. For example, we can compare the Unigram LM tokenizer to
the BPE tokenizer. To do this, we will train the tokenizers on the same training
corpus and then evaluate them using the intrinsic evaluation metrics on validation
sets for all the languages 𝐿.

The second type of experiment is comparing different tokenizers on down-
stream tasks. For example, we can compare the Unigram LM tokenizer to the BPE
tokenizer on the task of natural language understanding. To do this, we will train
the tokenizers on the same training corpus and then use the tokenizers to train
otherwise identical language models. Then we will evaluate the language models
on test sets for all the languages 𝐿.

3.5.2 Intrinsic evaluation
For the intrinsic evaluation of a set of tokenizers, we compute the metrics we
introduced in the previous section on the validation sets from all the languages 𝐿.
We compute the metrics for each tokenizer and validation language separately.
Then, we compare the per language metrics between the tokenizers. Because the
metrics are generally different for different languages (for example the characters
per token for Chinese will be always smaller than the characters per token for
English), we will often compare the relative differences between the tokenizers
rather than the absolute values.

34

We will also compute the overall metrics for the whole set of languages 𝐿. We
do this by averaging the metrics over all the languages. We use the macro average
over languages, which means that we average the metrics for each language with
the same weight. We use the macro average because we want to assess equally
the impact on the high-resource and low-resource languages. This is a choice
we make to assess each language equally. Different weighting schemes might be
more appropriate for different applications. Equal weighting across languages is
also in line with how are multilingual models evaluated in the related work [16].

The JSD metric which measures the vocabulary overlap is defined between a
pair of languages, measuring the overlap between the two. We compute the overall
overlap by considering the JSD values for all pairs of languages: 𝑙1, 𝑙2 ∈ 𝐿, 𝑙1 ≠ 𝑙2.

We can also define a ”combined CPT” or ”combined AR” for a pair of languages
by computing the metric for both languages and then averaging the values.

3.5.3 Extrinsic evaluation

For the extrinsic evaluation of tokenizers, we compare the performance of corre-
sponding language models that differ only in the tokenizers used. We evaluate
the performance on a set of language understanding tasks. Because the language
models are identical except for the tokenizer used, the differences in the perfor-
mance will be caused only by the differences in the tokenizers and random factors
such as the weight initialization of the language models.

Concretely, given a set of tokenizers, we train corresponding masked language
models with the same architecture and pretraining data. We then evaluate the
models by training linear classifiers (probes) on top of the contextualized word
embeddings produced by the language models. For a given pretrained model,
we train probes for each task-language combination utilizing training data in
all languages given for the task. For each configuration, we train 3 random
initializations of the probe with different seeds to acquire more stable results and
an estimate of the variation. In total, 𝑁models × 𝑁tasks × 𝑁languages × 𝑁seeds probes
are trained to compare the performance of the models for one experiment.

We use probing [39, 40, 41] to evaluate the language modeling capability of
the models. Instead of finetuning we freeze the base model and train only linear
classifiers on top of the outputs of the base model. This approach allows us to
evaluate the language modeling capability of the models without the influence of
the finetuning procedure.

To evaluate a model 𝑚 on task 𝑡 and languages 𝑡𝐿, we will train probes 𝑓𝑚,𝑡,𝑙src
for each training (source) language 𝑙src ∈ 𝑡𝐿. Then the probe will be evaluated on
the task test sets in languages 𝑙tgt ∈ 𝑡𝐿 using standard classification metric (in our
case: accuracy or F1 score).

35

Evaluation schemes

We will distinguish between two evaluation schemes — in-language evaluation
and cross-language evaluation.

The in-language performance of the model 𝑚 for task 𝑡 and a language 𝑙 will
be computed by evaluating the probe 𝑓𝑚,𝑡,𝑙 on the test set for the same language 𝑙.
The overall in-language performance of the model 𝑚 for task 𝑡 will be computed
by averaging the in-language performance over all the languages 𝑙 ∈ 𝑡𝐿.

The cross-language performance of the model for task 𝑡 from the source
language 𝑙src to the target language 𝑙tgt will be computed by evaluating the probe
𝑓𝑚,𝑡,𝑙src on the test set for a different language 𝑙tgt ≠ 𝑙src. The overall cross-language
performance of the model 𝑚 for task 𝑡 will be computed by averaging the cross-
language performance over all the language pairs 𝑙src, 𝑙tgt ∈ 𝑡𝐿, 𝑙src ≠ 𝑙tgt. Moreover,
we will compute the cross-language performance per language 𝑙 of the model 𝑚
for task 𝑡 by averaging the cross-language performance over all the languages
𝑙src ∈ 𝑡𝐿 given a target language 𝑙.

When considering the results per language in both evaluation schemes, it is
useful to consider only the relative differences between the models rather than
absolute values. The performance of the models for a given language is influenced
by eg. by the amount of training data available for the language. Therefore, when
interpreting the results per language, we will choose a reference model and
compute the relative difference between the performance of the reference model
and the other models. Alternatively, we compute the mean performance for a
given language across the models and report the relative difference between the
models and the mean performance.

Correlation between intrinsic and extrinsic evaluation

To support the claim that intrinsic evaluation is a good proxy for extrinsic evalua-
tion, we will compute the correlation between intrinsic and extrinsic evaluation.
Because the tokenizer metrics and model performance are influenced by the eval-
uation language as mentioned in the previous paragraph and in subsection 3.5.2,
we center the tokenizer metrics and downstream task results by subtracting the
mean for each language in the in-language setting or pair of languages in the
cross-lingual setting. In both cases, means are computed across all tokenizers.
We present Spearman’s correlation coefficient and the associated p-value.

Variation estimation

To account for the inherent randomness of the training procedure, we will train
multiple probes for each configuration (𝑚, 𝑡, 𝑙). We will use 3 random seeds
for each probe and report the average performance over the seeds. We will

36

also report the standard deviation of the performance over the seeds. In the
case of the summarized performances, we estimate the standard deviation using
bootstrapping over the seeds.

Note that because for one tokenizer we pretrain only one model, as it is
the most costly part of the experiment, we do not estimate the variance for the
pretraining of the model.

3.6 Evaluation on downstream tasks

Here we present the downstream tasks we use in our paper [13]. For our further
experiments, we use a subset of these tasks (POS, NER, NLI) that we have found
to have different responses to the changes in the CPT, AR and JSD metrics.

3.6.1 POS

We use Part of Speech annotations from Universal Dependencies [42]. The dataset
is available for 17 languages analyzed by us (not covered: Swahili, Thai, Georgian).
Each word is assigned one of the 17 coarse POS tags. We report the F1 score.

3.6.2 NER

We use the Wikiann dataset [43] consisting of Wikipedia articles with annotated
named entities of three types: location, person, and organization in IOB2. Follow-
ing XTREME, we use balanced data splits from [44]. We report the F1 score using
the seqeval library.

3.6.3 Dependency labeling

As in Part of Speech, we use Universal Dependencies [42] for the dependency
relation annotations. We use the largest UD treebank available for each language.
For each word, we predict one of the 37 universal relations to its head word.

3.6.4 NLI

We use XNLI dataset [45] for Natural Language Inference. We classify whether
the premise contradicts, entails, or is neutral to the hypothesis. We evaluate XNLI
with the accuracy of classification.

XNLI contains data for 15 languages (not covered: te, ta, mr, he, ka).

37

3.6.5 Sentence Retrieval

We use up to 1,000 sentences aligned for pairs of languages from Tatoeba dataset
[46]. For the pairs including English, we use the same sample as in XTREME data
collection. For other pairs, we perform sampling ourselves.

We compute the cosine similarity between sentence representations across
languages and find the best alignment with the Hungarian algorithm[47]. We
compute the accuracy as the number of correctly aligned sentences divided by
the total number of sentences.

3.7 Implementation Details

3.7.1 Model pretraining

We will train the language models to be able to assess the influence of the tok-
enization method on the language model performance.

We use the Huggingface framework [20] for pretraining the language model.
We follow Conneau et al. [5] and pretrain the language model with the Masked
Language Model objective. The model architecture is based on a scaled-down
version of XLM-RBase [5]. The size of embeddings is kept at 768, the number of
attention layers is reduced from 12 to 8, the number of attention heads is reduced
from 12 to 6. The maximum sequence length is set to 128 tokens. The total
number of parameters is roughly two times smaller than the original XLM-RBase.

The models are pretrained for 10k steps with the batch size 8192 achieved by
using gradient accumulation. This amounts to ≈ 1.6 epochs over our training
dataset. The learning scheduler is linear with warmup for the first 500 steps. The
learning rate is set to 5𝑒 − 4. We use the AdamW optimizer.

3.7.2 Model probing

To evaluate the models, we train a linear classifier on top of the model. For
the word-level classification tasks (POS, NER), the probe is trained on the mean
of the word embeddings. For dependency labeling, the probe is trained on the
concatenation of the two word representations along with their element-wise
product as an input to the probe ([ℎ𝑤1; ℎ𝑤2; ℎ𝑤1 ⊙ ℎ𝑤2]). For sentence-level XNLI,
we train the linear classification probe on top of the concatenation of two sentence
vectors and their element-wise product: [ℎ𝑠1; ℎ𝑠2; ℎ𝑠1 ⊙ ℎ𝑠2].

We freeze the model parameters and train only the classifier. We use the
Adam optimizer with a learning rate 2𝑒 − 3 and batch size 512. We train for 60
epochs and select the best model based on the validation accuracy.

38

The code used for pretraining and finetuning is included in the thesis attach-
ment.

3.7.3 Reproducing the vocabulary balancing methods

In this section, we describe our reproduction of the existing methods for balancing
the low- and high- resource languages in the vocabulary. As the code for two out
of three of the methods is not available, we follow and reimplement the original
papers closely and describe the differences in our implementation.

The methods of Chung et al. [10] and Liang et al. [12] follow a three step
process: 1) grouping the languages into clusters by similarity, 2) running the
Unigram LM tokenizer training on the clustered corpora and 3) combining the
cluster-vocabularies into a single, multilingual vocabulary. Because of their
similarity, we refer to the two as the clustering methods. The method of Zheng
et al. [11] works in two steps: 1) training the Unigram LM tokenizers for each
language separately and 2) selecting the best vocabulary size for each language
and combining the vocabularies into a single, multilingual vocabulary.

As we can see the methods share the last merging step and differ in the
clustering approaches. We therefore describe the clustering approaches first, then
we describe the Zheng method and finally we describe the merging step common
for all methods.

Reproducing the clustering methods

The first step for the Chung and Liang methods is to train monolingual Unigram
LM tokenizers for each language 𝑙 from the set of 20 languages 𝐿. As specified
in Chung et al. [10], we use the default Sentencepiece settings we describe in
Table A.1. For training the monolingual tokenizers, we use 1M lines for each
language which we have shown to be enough in preliminary experiments subsec-
tion 5.2.2. This choice also corresponds to the Zheng et al. [11] method, which
uses 1M lines for each language. The vocabulary size differs between Chung
and Liang and so we train two sets of monolingual tokenizers, with 8k and 30k
vocabulary sizes respectively.

We arrive at |𝐿| vocabularies 𝑉 𝑙. Next, we take the union of all vocabularies
𝑉 𝐿 = ⋃𝑙∈𝐿 𝑉

𝑙 and compute the ”vector representation” v𝑙 for each language 𝑙
as described in subsection 2.4.1 and subsection 2.4.3. For Chung, we compute
a binary vector of size |𝑉 𝐿|, where each element v𝑙𝑖 is 1 if the token 𝑖 is in the
vocabulary 𝑉 𝑙 of language 𝑙 and 0 otherwise. For Liang, we compute a vector
of size |𝑉 𝐿|, where each element v𝑙𝑖 is the negative log-probability of the token 𝑖
in the language 𝑙 as computed by the Sentencepiece training algorithm. We set

39

the log probability of the tokens not in the vocabulary to 0 as inferred from the
Figure 2.6 from [12]1.

With the vector representations v𝑙 we can cluster the languages into 𝑘 clusters
𝐶𝑘 using the k-means algorithm. We use the implementation from scikit-
learn [48] with the default parameters. Chung et al. [10] reports using the cosine
distance for the k-means algorithm. We normalize the language representation
vectors to unit length, to achieve the same effect. In the case of Liang, we stick to
Euclidean distance as the authors do not mention using a different metric. We
experiment with 𝑘 ∈ {4, 8, 16, 20}. Note that 𝑘 = 20 corresponds to separating
each language into a separate cluster which is similar to the method TokMix
we introduce in Limisiewicz, Balhar, and Mareček [13] and Zheng et al. [11] we
replicate next.

Then, given a clustering of languages 𝐶, for each cluster 𝑐𝑗 ∈ 𝐶 we create a
new training corpus by concatenating all of the CC100 data belonging to the
cluster2. We run the Sentencepiece algorithm again on these clustered corpora to
arrive at cluster-specific vocabularies 𝑉 𝑐𝑗 . The vocabulary size for each cluster
is determined following the Chung and Liang methods. For both methods, we
want to arrive at the final size of 120k tokens after merging the cluster-specific
vocabularies. Therefore we need to determine the size of each cluster vocabulary
|𝑉 𝑐𝑗 | such that ∑𝑘

𝑗=1 |𝑉
𝑐𝑗 | = 120𝑘. The Chung method sets the size of the cluster

vocabulary to be proportional to the size of the union over the monolingual
vocabularies | ⋃𝑙∈𝑐𝑗 𝑉

𝑙| to determine the size of each cluster vocabulary as follows:

|𝑉 𝑐𝑗 | =
|⋃𝑙∈𝑐𝑗 𝑉

𝑙|

∑𝑘
𝑖=1 | ⋃𝑙′∈𝑐𝑖 𝑉

𝑙′ |
⋅ 120𝑘 (3.24)

The Liang method proposes to set the size of the cluster vocabulary to be
proportional to the sum of the vocabulary allocations from Zheng et al. [11] for
the languages belonging to the cluster. We use the allocations we reproduce in
section 3.7.3. 3

1We note that setting the log probability of tokens not present in vocabulary to 0 might, in our
opinion, lead to problems, as log probability 0 implies probability 1. More natural choice might be
to construct the language vectors using probability directly.

2Because of computational constraints, we cap the total number of lines per cluster to 20M. If
the cluster corpus exceeds the total number of lines, we subsample the available data with 𝛼 = 1.0

3Here we slightly improve the methods of Chung and Liang. By following the original method
as described above, the final size of the vocabulary will be lower than the target we set. This is
because the cluster vocabularies 𝑉 𝑐𝑗 will contain overlapping tokens and merging will remove
these duplicates. This negative effect becomes larger with the increasing number of clusters 𝑘.
Therefore, on top of training the prescribed cluster vocabulary of size |𝑉 𝑐𝑗 |, we also train slightly
larger vocabularies 𝑉 𝑐′𝑗

𝑞 of size |𝑉 𝑐𝑗
𝑞 | = 𝑞|𝑉 𝑐𝑗 | for 𝑞 = 1.1, 1.2, 1.3. We then select the minimum 𝑞 that

results in a vocabulary size of at least 120k tokens after merging the cluster vocabularies. After

40

After the tokenizers are trained, we merge the vocabularies using the method
described in section 3.7.3.

The resulting clusters and the corresponding per-cluster vocabulary sizes are
found in Tables 3.5, 3.6, 3.7, and 3.8.

By a quick inspection, we see that the clusters are often composed of languages
that share a common script but are not necessarily related typologically. For
example, we often see the Arabic and Urdu languages in the same cluster even
though the languages belong to different language families.

Reproducing the VoCap method

From the high level, the VoCap method works by selecting the best vocabulary
size for each language and then merging the monolingual vocabularies. The best
vocabulary size is determined by maximizing the overall Average Log Probability
metric defined in Equation 3.7.

To replicate the VoCap method, we first need to compute the ALP metric for
each language 𝑙 and each vocabulary size 𝑉 ∈ 1000, ..., 40 000. To that end, we
train monolingual tokenizers using Sentencepiece with default settings for all 20
languages with vocabulary sizes from 1k to 40k.4 We use 1M lines per language
for training the monolingual tokenizers again, following Zheng et al. [11]. Note
that for Chinese the tokenizer vocabulary size starts at 5k due to the large number
of unique logograms in the language.

We then load a sample of CC100 data for each language (100k lines per
language) and tokenize each monolingual corpus with the respective tokenizers
of increasing vocabulary sizes. We are then able to compute the ALP(𝑙, 𝑉) metric
for each language 𝑙 and each vocabulary size 𝑉.

Now we can proceed to greedily select the best vocabulary sizes. We start
with selecting the lowest vocabulary size for each language (1k for all languages
except Chinese where we start with 5k). We merge the selected vocabularies of
the tokenizers as explained in section 3.7.3. Then in each iteration, we check
which language would benefit the most from increasing the vocabulary size by
1000. Concretely, we check the increase in ALP for each language and increase
the vocabulary size for that language by merging the bigger vocabulary with the
total vocabulary. We repeat this process until the total vocabulary size reaches

that, we trim the vocabulary if needed. This improvement is done to ensure the final vocabulary
size is exactly 120k tokens and the comparison between the methods is fair.

4The more effective way, not discussed by Zheng et al. [11], would be to modify the Sentence-
piece unigram trainer code to produce a tokenizer after each prune iteration. That way we would
get series of tokenizers with decreasing vocabulary size in one go, instead of running the trainer
40 times. As the computational cost of training the tokenizers is not high for our reduced set of
20 langugaes, we have not implemented this improvement.

41

Languages Size

zh, ar, ru, bg 27425
el, ur, ta, te, th, he, ka 48841
en, es, tr, sw, vi, fr, de 43622
hi, mr 12108

(a) Chung et al. [10]

Languages Size

el, zh, ar, ur, ta, te, th, he, ka 61285
en, es, tr, sw, vi, fr, de 43370
hi, mr 10370
ru, bg 16970

(b) Liang et al. [12]

Figure 3.5 Cluster assignments for 4 clusters

Languages Size

el 7458
ru, bg 12975
ta, te 14318
en, es, tr, sw, th, ka, vi, fr, de 56509
ar, ur 13788
hi, mr 12030
zh 7458
he 7458

(a) Chung et al. [10]

Languages Size

en, fr 12256
es, tr, sw, de 27342
ru, bg 16970
ar, ur 12256
vi 3770
hi, mr 10370
el, ta, te, th, he, ka 37713
zh 11313

(b) Liang et al. [12]

Figure 3.6 Cluster assignments for 8 clusters

Langs. Size Langs. Size

ar, ur 14020 zh 7582
tr 7582 he 7582
en, fr 13549 ta 7582
hi, mr 12232 sw 7582
ru, bg 13194 ka 7582
vi 7582 th 7582
te 7582 es 7582
el 7582 de 7582

(a) Chung et al. [10]

Langs. Size Langs. Size

de 8228 te 7200
ar 7200 vi 4113
en, fr 13370 el 10285
hi, mr 11313 ta 4113
ru, bg 18513 zh 12342
ka 8228 sw 6170
he 5142 es 7200
tr, th 14400 ur 6170

(b) Liang et al. [12]

Figure 3.7 Cluster assignments for 16 clusters

42

Languages Size

ar 7200
bg 7200
de 7200
el 7200
en 7200
es 7200
fr 7200
he 7200
hi 7200
ka 7200
mr 7200
ru 7200
sw 7200
ta 7200
te 7200
th 7200
tr 7200
ur 7200
vi 7200
zh 7200

(a) Chung et al. [10]

Languages Size

ar 7200
bg 8228
de 8228
el 10285
en 6170
es 7200
fr 7200
he 5142
hi 5142
ka 8228
mr 6170
ru 10285
sw 6170
ta 4113
te 7200
th 6170
tr 8228
ur 6170
vi 4113
zh 12342

(b) Liang et al. [12]

Languages Size

ar 7000
bg 8000
de 8000
el 10000
en 6000
es 7000
fr 7000
he 5000
hi 5000
ka 8000
mr 6000
ru 10000
sw 6000
ta 4000
te 7000
th 6000
tr 8000
ur 6000
vi 4000
zh 12000

(c) Zheng et al. [11]

Figure 3.8 Allocated vocabulary sizes for 20 languages

120k tokens. Any tokens over the limit are removed from the vocabulary.
Contrary to Zheng et al. [11], we do not use the 𝛽 rescaling factor to account

for the pretraining corpus size (we describe the 𝛽 parameter in related work
subsection 2.4.2). By setting 𝛽 to 0, we want to achieve the best ALP for each
language regardless of its corpus size. This is because our goal is to balance the
low-resource languages, not necessarily achieve the best performance on the
downstream tasks.

The final vocabulary sizes for each language are found in Figure 3.8c

Merging the tokenizers

For all reproduced methods, the last step is to take several Unigram tokenizers
and merge them into the final, multilingual tokenizer. Now we will describe how
we merge tokenizers in our case. Unfortunately, the merging step is not described
fully in any of the reproduced papers. In the case of the Unigram tokenizers,

43

tokenizer 𝜏 consists of vocabulary (set of strings) 𝑉𝜏 ⊂ Σ⋆ and the corresponding
logits 𝐿𝜏 ∶ Σ⋆ → ℝ so that ∑𝑡∈𝑉𝜏 exp(𝐿𝜏(𝑡)) = 1. The logits are used for finding
the most probable segmentation of an input sentence.

To create the merged vocabulary for input tokenizers 𝜏1, ...𝜏𝑚 we take the
union over the vocabularies:

𝑉𝜏 ≔
𝑚
⋃
𝑖=1

𝑉𝜏𝑖 (3.25)

We set the merged logits to the log of the average probability of the token in
the input tokenizers:

∀𝑡 ∈ 𝑉𝜏 ∶ 𝐿𝜏(𝑡) ≔ log(1
𝑚

𝑚
∑
𝑖
exp(𝐿𝜏𝑖(𝑡))) (3.26)

If the token 𝑡 is not present in some of the input tokenizers, we consider the
probability of the token for that tokenizer to be zero.

In this way the sum of the probabilities of the tokens in the merged vocabulary
is one and thus the merged tokenizer is a valid Unigram tokenizer. We can see
this by the following derivation. We assume that the input tokenizers 𝜏𝑖 are valid
Unigram tokenizers and thus the sum of the probabilities of the tokens in the
input tokenizers is one:

∑
𝑡∈𝑉𝜏

exp(𝐿𝜏(𝑡)) = ∑
𝑡∈𝑉𝜏

exp(log(1
𝑚

𝑚
∑
𝑖
exp(𝐿𝜏𝑖(𝑡)))) =

= ∑
𝑡∈𝑉𝜏

1
𝑚

𝑚
∑
𝑖
exp(𝐿𝜏𝑖(𝑡)) =

1
𝑚

𝑚
∑
𝑖
∑
𝑡∈𝑉𝜏

exp(𝐿𝜏𝑖(𝑡)) =
1
𝑚

𝑚
∑
𝑖
1 = 1

(3.27)

We argue that this is the most natural way to merge the tokenizers and so we
assume this is probably the way the other authors did the merging. By observing
the logits in the tokenizer released by Liang et al. [12]5, we see that the authors do
merge the logits in some way but the sum of the probabilities in the final tokenizer
is ≈ 4.55 (not counting the special tokens), which suggests some problems in the
merging step. The tokenizer released by Zheng et al. [11] seems to be merged
correctly6.

5https://huggingface.co/facebook/xlm-v-base/blob/main/sentencepiece.bpe.model
6https://github.com/bozheng-hit/VoCapXLM/blob/main/VoCap_500k/sentence-

piece.bpe.model

44

https://huggingface.co/facebook/xlm-v-base/blob/main/sentencepiece.bpe.model
https://github.com/bozheng-hit/VoCapXLM/blob/main/VoCap_500k/sentencepiece.bpe.model
https://github.com/bozheng-hit/VoCapXLM/blob/main/VoCap_500k/sentencepiece.bpe.model

Chapter 4

Tokenizer properties affect the
performance of language models

In this chapter, we propose and conduct an experiment to answer (Q1) how sub-
word tokenizers differ in overlap and allocation of learned vocabularies. Moreover,
we explore (Q2) which properties affect the language model representation quality.
Our goal is to establish that the metrics we propose are useful for assessing the
differences between tokenizers and that they are useful for comparing whether a
given tokenizer is better than another.

To answer these questions, we train three tokenizers and assess how they
differ in the metrics we propose. We then look at how are these differences
manifested when we use these tokenizers to train otherwise identical multilingual
models. We then assess whether the proposed metrics are good predictors of the
model’s performance.

The results presented in this section are selected from our paper Limisiewicz,
Balhar, and Mareček [13]. We refer the reader to the paper for more in-detail
analysis and additional experiments. Here we present experiments that are most
relevant to the thesis goal.

4.1 Analysis of Tokenizer Properties

We train three distinct tokenizers — Huggingface Unigram, Huggingface BPE
and TokMix tokenizer [13] described in the following subsection. We use the
Huggingface implementation1 of the training algorithms for the Unigram and
BPE tokenizers. The training data for all tokenizers is the CC100 corpus sampled
with the exponential smoothing factor 𝛼 = 0.25. After tokenizer training, we

1https://github.com/huggingface/tokenizers

45

https://github.com/huggingface/tokenizers

perform an intrinsic evaluation of the tokenizers on each language separately
and report the macro average of the metrics (For details see subsection 3.5.2).

After tokenizer evaluation, we use the tokenizers to train three masked lan-
guage models. We use the same training data and the same model architecture
for all models defined in subsection 3.7.1. The only difference is the tokenizer
used to preprocess the data. We then evaluate the models using probing on
three multilingual word-level tasks (part of speech tagging, dependency labeling
and named entity recognition) and one sentence-level task (cross-lingual natural
language inference). We evaluate the overall in-language performance and com-
pare it to the tokenizer metrics. We then do a more fine-grained comparison by
evaluating the model on each language separately and comparing the results to
the tokenizer metrics also measured on each language separately. (For details see
subsection 3.5.3)

4.1.1 TokMix tokenizer

To create our TokMix tokenizer, we run the Huggingface Unigram tokenizer
training on each language corpus 𝐶𝑙, 𝑙 ∈ 𝐿 separately. After this, we end up with 20
separate tokenizers with equal vocabulary sizes. We merge the vocabularies of all
tokenizers into one large vocabulary 𝑉 = ⋃𝑙∈𝐿 𝑉𝑙, average the token probabilities
and trim the vocabulary to the desired size |𝑉 | = 120 000.

4.2 Results

4.2.1 Intrinsic evaluation

In the Table 4.1 we see that the choice of the tokenization method largely in-
fluences the vocabulary allocation and overlap metrics. The Huggingface BPE
tokenizer produces on average the longest tokens (high CPT), the most uniform
allocation of tokens (high AR), and the least overlap between languages (high
JSD). On the other hand, the Huggingface Unigram segments the text into shorter
tokens and the average vocabulary overlap between all languages is much higher.
The high overlap might be related to the low allocation as it is more likely that
shorter tokens are shared between languages.

Interestingly, the TokMix tokenizer has a similar vocabulary allocation (CPT,
AR) as the Huggingface BPE tokenizer. This is surprising as the TokMix tokenizer
is based on the Huggingface Unigram tokenizer, which shows significantly lower
scores.

46

Tokenizer Alphabet # UNKs CPT AR JSD

Huggingface BPE, 𝛼=0.25 1000 14040.1 3.713 1253.7 0.783
TokMix, 𝛼=0.25 2497 1203.2 3.691 1163.4 0.773
Huggingface Unigram, 𝛼=0.25 12616 4.5 3.204 1010.5 0.745

Table 4.1 In the first batch of experiments, we compare the Huggingface Unigram,
Huggingface BPE, and our TokMix method based on merging Huggingface Unigram tok-
enizers. Huggingface Unigram has significantly lower vocabulary allocation scores (−0.4
CPT and −153 AR) than BPE and TokMix. This means that Unigram uses shorter tokens
and the capacity of the vocabulary is used less uniformly. Moreover, the vocabulary has
more overlap between the languages for Unigram (JSD decrease by −0.03). The scores
are macro averages over all languages, computed over a holdout portion of the CC100
corpus. We sample 10k lines from each language which we have empirically found to be
enough to get representative results.

4.2.2 Extrinsic evaluation
Next, we use the tokenizers from Table 4.1 and pretrain three masked language
models. We find that the choice of the tokenizer has a large impact on the model’s
in-language performance. The Table 4.2 shows that the Huggingface Unigram has
a significantly lower performance than the other two tokenizers on the word-level
tasks (NER, POS, UD). The overall performance on sentence-level NLI is similar
across tokenizers.

We validate this observation by looking at the interaction between the to-
kenizer metrics and model performance on the level of individual evaluation
languages Figure 4.1. In each scatterplot, each point represents a pair (𝜏 , 𝑙) of
a tokenizer 𝜏 from our three tested tokenizers and a language 𝑙 from the set of
languages available for the given task. The position of the point corresponds to
the observed tokenizer metrics and task performance 2. We see that the Hug-
gingface Unigram tokenizer exhibits lower performance on the word-level tasks
(NER, POS, UD) which corresponds to the lower vocabulary allocation metrics.
We the most clear relationship between NER and CPT, UD and CPT, and POS and
CPT. We quantify this relationship by computing Spearman’s correlation coeffi-
cient between the tokenizer metrics and the model performance. The results are
shown in Table 4.3. We see that the vocabulary allocation metrics are positively
correlated with the model performance on the word-level tasks. The length of
the tokens has a strong positive influence on POS, dependency labeling, and NER

2As explained in section 3.5.3, we center the tokenizer metrics and downstream task results
by subtracting the mean for each language to account for the differences between languages we
cannot control for. This way we see only the improvements and deteriorations of the tokenizers
and models compared to the mean value for the given language.

47

results (𝑟 > 0.65), while it does not significantly affect NLI results. The correlation
between the average rank and NER scores is weaker but still significant. More-
over, it is significantly correlated with XNLI accuracy with a medium coefficient
𝑟 = 0.56. Our findings suggest that longer tokens and more tokens allocated for a
given language in the vocabulary improve the in-language model performance
on our tested tasks.

We conduct a similar analysis for the cross-lingual setting. We evaluate the
probes on all languages except the one on which the probe was trained on. The
results are shown in Figure 4.2 and a summary of the correlations in Table 4.4.
Each point corresponds to a triplet (𝜏 , 𝑙src, 𝑙tgt) of a tokenizer 𝜏, a language 𝑙src the
probe was trained on, and a language 𝑙tgt ≠ 𝑙src the probe was evaluated on. We
see that the cross-lingual performance is positively correlated with the vocabulary
overlap metric JSD in the case of the word-level tasks. This suggests that smaller
vocabulary overlap between the languages improves the cross-lingual perfor-
mance on the word-level tasks. On the other hand, we see that the correlation
between the combined CPT metric and the cross-lingual performance is similarly
strong and that there is also a strong correlation between JSD and combined CPT.
In this case, the correlation between JSD and downstream performance could be
caused by a confounding factor of better vocabulary allocation as measured by
CPT.

Overall, we see that the differences between tokenizers are reflected in the
representation quality. High CPT and AR metrics are correlated with better
probe performance, especially on word-level tasks such as part of speech tagging,
named entity recognition, and dependency labeling. Moreover, the cross-lingual
performance is also correlated with the vocabulary allocation and overlap metrics.

Therefore, we see that our metrics are useful for assessing the differences
between tokenizers. Moreover, the differences in tokenizers are reflected in the
learned representations of the models, especially on word-level tasks.

Note that in this section we have included only a part of the experiments
from our paper Limisiewicz, Balhar, and Mareček [13] published in ACL Findings
2023. Namely, we focus only on the experiments that are based on the same 20
languages as the rest of the thesis. For our purposes, we focus only on the more
general conclusions. We refer the reader to the original paper for the full set of
experiments, where we additionally discuss in more detail which tasks are more
affected by which properties of the tokenizers.

48

Tokenizer NER POS UD XNLI

Huggingface BPE 66.3 ±0.2 67.3 ±0.4 54.5 ±0.5 53.5 ±0.3
TokMix 65.4 ±0.3 66.5 ±0.4 53.9 ±0.5 52.3 ±0.3
Huggingface Unigram 58.9 ±0.2 54.0 ±0.4 43.7 ±0.4 53.2 ±0.3

Table 4.2 Results of extrinsic evaluation for the Huggingface tokenizers. We observe
significant changes for different tokenization methods. We report the F1 score for NER,
POS and UD. XNLI is reported as accuracy. The scores are macro averages over all
languages.

V. Allocation
(AR) (CPT)

CPT 0.790 -
NER 0.394 0.657
POS 0.320 0.724
Dep l. 0.266 0.675
NLI 0.56 0.388

Table 4.3 Spearman correlations between centered in-language task results and tok-
enizer measures. Statistically significant correlations (𝑝 < 0.01) are bolded.

V. Overlap V. Allocation SRC V. Allocation TGT
(JSD) (AR) (CPT) (AR) (CPT)

NER 0.553 0.172 0.412 0.409 0.568
POS 0.759 0.383 0.69 0.436 0.714
Dep l. 0.596 0.314 0.587 0.351 0.605
NLI -0.078 -0.039 -0.006 -0.083 -0.082
Retrieval 0.156 0.214 0.139 0.214 0.144

Table 4.4 Spearman correlations between cross-lingual transfer results and tokeniza-
tion measures. vocabulary overlap is measured by JSD, we also measure the correlation
with vocabulary allocation s of source and target language of the transfer directions.
Statistically significant correlations (𝑝 < 0.01) are bolded.

49

0.5

0.0

0.5

CP
T

r = 0.79
p = 0.000

r = 0.66
p = 0.000

r = 0.67
p = 0.000

r = 0.72
p = 0.000

r = 0.39
p = 0.015

500

0

500

1000

Av
g.

 R
an

k

r = 0.39
p = 0.002

r = 0.27
p = 0.059

r = 0.32
p = 0.022

r = 0.56
p = 0.000

0.15

0.10

0.05

0.00

0.05

NE
R

r = 0.72
p = 0.000

r = 0.83
p = 0.000

r = 0.08
p = 0.627

0.2

0.1

0.0

0.1

UD

r = 0.87
p = 0.000

r = 0.06
p = 0.724

0.2

0.1

0.0

0.1

PO
S

r = 0.16
p = 0.360

1 0
CPT

0.04

0.02

0.00

0.02

XN
LI

1000 0 1000
Avg. Rank

0.2 0.1 0.0 0.1
NER

0.2 0.0 0.2
UD

0.2 0.0 0.2
POS

0.05 0.00 0.05
XNLI

Tokenizer
BPE
TokMix
Unigram

Figure 4.1 We compare the tokenizer metrics against the contextualized representa-
tion quality. For each tokenizer, we pretrain a masked language model, freeze it, and
train a linear probe for each task and each of the available languages. We observe a
high Spearman correlation between CPT and the word-level tasks (NER, POS, UD) and
a high correlation between AR and the sentence-level task XNLI. This suggests that
our vocabulary allocation metrics are good indicators of the tokenizer’s quality and
higher vocabulary allocation leads to better downstream performance. Each data point
corresponds to an average result over three seeds of probe training and evaluating one of
the languages. The results for each language are centered around the mean to account
for the differences between languages as explained in section 3.5.3. The colors of points
are assigned for specific tokenizers.

50

0.05

0.00

0.05

JS
D

r = 0.78
p = 0.000

r = 0.65
p = 0.000

r = 0.55
p = 0.000

r = 0.76
p = 0.000

r = -0.08
p = 0.050

0.75

0.50

0.25

0.00

0.25

m
ea

n_
CP

T

r = 0.73
p = 0.000

r = 0.52
p = 0.000

r = 0.75
p = 0.000

r = -0.05
p = 0.254

400

200

0

200

400

m
ea

n_
AR

r = 0.29
p = 0.000

r = 0.39
p = 0.000

r = -0.01
p = 0.870

0.10

0.05

0.00

0.05

0.10

NE
R

r = 0.51
p = 0.000

r = -0.00
p = 0.974

0.10

0.05

0.00

0.05

0.10

PO
S

r = -0.09
p = 0.042

0.10 0.05 0.00 0.05
JSD

0.06
0.04
0.02
0.00
0.02
0.04

XN
LI

0.5 0.0 0.5
mean_CPT

500 0 500
mean_AR

0.1 0.0 0.1
NER

0.1 0.0 0.1
POS

0.05 0.00 0.05
XNLI

Tokenizer
BPE
TokMix
Unigram

Figure 4.2 We compare the tokenizer metrics against the cross-lingual performance
of the models. For each tokenizer, we pretrain a masked language model, freeze it, and
train a linear probe on each of the available languages. Then we evaluate the models on
all languages the probe has not been trained on, assessing the cross-lingual properties
of the model. Here we observe a high correlation between JSD and the word-level tasks,
especially the POS and UD. This suggests that less overlap (higher divergence) between
the vocabularies of the languages leads to better cross-lingual performance for word-level
tasks.

51

4.3 Findings
We find that the choice of the tokenization method largely influences the vocab-
ulary allocation and overlap metrics (Q1). We see that Huggingface BPE better
allocates the vocabulary overall and has a lower overlap between languages. On
the other hand, the Huggingface Unigram tokenizer segments the text into shorter
tokens and the average vocabulary overlap between all languages is much higher.

We find that the differences between tokenizers are reflected in the repre-
sentation quality (Q2). High vocabulary allocation metrics are correlated with
better probe performance, especially on the word-level tasks. Moreover, the
cross-lingual performance is correlated with higher vocabulary allocation and
lower overlap.

Our findings validate our proposed metrics as they are useful predictors of
the model’s performance.

52

Chapter 5

Design choices for better
multilingual tokenizers

In this chapter, we propose and conduct a series of experiments to answer (Q3)
what is the reason that the standard tokenizer training method does not work
well in the multilingual setting. Our goal is to explore why was the Unigram
algorithm found to be unsuitable for multilingual tokenization by our related
work. Moreover, we investigate the reason behind the large difference in the
quality of tokenizers in the previous Chapter 4.

To answer the question, we first investigate the differences in implementation
between Huggingface Tokenizers1 and the original Sentencepiece2. Next, we
look at the influence of the training data size, the alphabet size, and finally the
language imbalance in the training data. In the last experiment, we will examine
closely the effect of the data imbalance on the tokenizer’s quality per language.

5.1 Experiments
As shown in the previous Chapter 4, we observe that the Huggingface Unigram
tokenizer leads to significantly worse metrics than the other tokenizers. We
investigate this difference by turning to the original Sentencepiece implementation
of the algorithm and running a comparable experiment. For comparison, we also
train a comparable BPE tokenizer using the Sentencepiece library. We evaluate
the tokenizers using our metrics.

Next, we train a series of Unigram tokenizers on different amounts of data
and see how the data amount influences the tokenizers’ quality. We sample
𝑁 = 1 000, 10 000, 100 000, 1 000 000, 1 500 000, 2 000 000 lines for each of the 20

1https://github.com/huggingface/tokenizers
2https://github.com/google/sentencepiece

53

https://github.com/huggingface/tokenizers
https://github.com/google/sentencepiece

languages, concatenate the samples and create a balanced corpora of different
sizes. We then evaluate the tokenizers using our metrics.

We proceed with a similar analysis for the alphabet size. The alphabet of
a tokenizer is the set of characters that are included in the vocabulary. We
hypothesize, that too large alphabet size may influence the vocabulary allocation,
we therefore use the character coverage parameter of the Sentencepiece library
to control the alphabet size. The character coverage parameter determines, how
many distinct Unicode characters are included in the vocabulary of the tokenizer.
We train a series of Sentencepiece Unigram tokenizers with the character coverage
parameter set to 98%, 99.5%, 99.95%, 99.995%, 99.9995%, and 100.0% on data sampled
with 𝛼 = 0.3 from CC100.

Finally, for the data balance experiment, we train 5 tokenizers with an increas-
ingly imbalanced corpus with 𝛼 = 0.0, 0.3, 0.5, 0.7, 1.0 sampled from the CC100
with 20 languages. 3 On one extreme we have the 𝛼 = 1.0, where all data available
for each language is combined. On the other, we have 𝛼 = 0.0, where the data
is sampled per line from each language with the same probability. We use the
Sentencepiece Unigram tokenizer with the default settings. Specifically, we use
the default character coverage of 99.95%. As usual, we evaluate the tokenizers on
a balanced validation set sampled from a holdout portion of the CC100 corpus.

5.2 Results

5.2.1 Choice of implementation

The results are presented in Table 5.1. We see that the implementation has an
effect on tokenization. We compare the Sentencepiece Unigram (𝛼=0.25) tokenizer
trained on the same data and with the same parameters (100% alphabet coverage)
as the Huggingface Unigram (𝛼=0.25). We see that there is a large difference
between the two. The Huggingface Unigram underperforms all of our tokenizers.
On the other hand, the Sentencepiece Unigram approaches the metrics of both
BPE tokenizers. We further see that if we restrict the vocabulary size for the
Sentencepiece Unigram ((𝛼=0.3)), we close the gap between Unigram and BPE.

Interestingly, we observe that the Huggingface implementation of BPE seems
to be better than the Sentencepiece implementation of BPE in our experimental
setup, yielding higher vocabulary allocation metrics (CPT and AR).

3For 𝛼 = 0.0, 0.3, 0.5, 0.7 we make sure to sample at least 100k lines per language as we have
found this to be important in subsection 5.2.2. We note that the data imbalance for 𝛼 = 1.0 is so
large, that we needed to settle for 30k-70k training lines for the five least resourceful languages
(ka, ur, te, mr, sw) because of memory constraints.

54

Tokenizer Alphabet # UNKs CPT AR JSD

Huggingface BPE 𝛼=0.25 1000 14040.1 3.713 1253.7 0.783
Sentpiece. BPE 𝛼=0.25 1215 7235.6 3.666 1212.9 0.774
Sentpiece. Unigram 𝛼=0.3,
99.95% character coverage 2666 923.5 3.702 1190.7 0.768

Sentpiece. Unigram 𝛼=0.25,
100% character coverage 12577 4.5 3.629 1125.5 0.767

Huggingface Unigram 𝛼=0.25 12616 4.5 3.204 1010.5 0.745

Table 5.1 In this table, we compare the Huggingface and Sentencepiece implementa-
tions of the Unigram and BPE algorithms. The Huggingface Unigram tokenizer is a clear
outlier in terms of all metrics. We can see that this is a problem in the implementation
as the corresponding Sentencepiece Unigram 𝛼=0.25, with 100% alphabet coverage scores
much higher on our metrics. Interestingly, we found that the BPE implementation (Hug-
gingface BPE 𝛼=0.25) seems to be better in Huggingface than in Sentencepiece (Sentpiece.
BPE 𝛼=0.25).

Because of the subpar implementation of the Unigram algorithm in the Hug-
gingface library, we use the Sentencepiece implementation for the rest of the
experiments.

5.2.2 Data size
We are interested in how much data is needed for the tokenizer training. We
present the results in Table 5.2. We see that the metrics improve with the amount
of data, but the improvement stops to be substantial after 100k-1M lines per
language. We use these results as a rule of thumb for the rest of the experiments
and where possible, we use at least 100k but preferably 1M lines per language.

5.2.3 Character coverage
We are also interested in the influence of the alphabet size on our metrics. As we
have seen in Table 5.1, large alphabet size influences the vocabulary allocation
metrics. We show the results in Table 5.3. We see that there is a direct relationship
between the character coverage, alphabet size, and the number of unknown tokens
in the validation set. We also see that our metrics are not largely affected by the
alphabet size, as the alphabet accounts for at most 10% of the whole vocabulary
size 120 000. The lowest vocabulary allocation metrics are on the extremes of
the character coverage parameter, where the resulting alphabet size is either
very small or very large. We assume that the small alphabet size leads to a

55

Lines per lang. Alphabet # UNKs CPT AR JSD

1 000 3598 520.4 3.302 958.4 0.766
10 000 4725 117.8 3.598 1089.1 0.765

100 000 5041 65.5 3.696 1192.2 0.767
1 000 000 5079 62.6 3.702 1204.7 0.767
1 500 000 5176 55.9 3.705 1210.7 0.767
2 000 000 5180 56.4 3.705 1212.5 0.767

Table 5.2 We measure how much data is generally needed for the tokenizer training.
We train handful of Sentencepiece Unigram tokenizers on different amounts of balanced
multilingual data. We observe that after 100k-1M lines per language, the tokenizers
converge to similar vocabulary allocation and overlap scores.

Coverage Alphabet # UNKs CPT AR JSD

98.0% 539 17386.5 3.631 1115.3 0.749
99.5% 1136 7786.9 3.702 1173.1 0.765
99.95% 2678 910.6 3.705 1196.7 0.768
99.995% 4813 83.0 3.695 1188.7 0.769
99.9995% 8226 10.2 3.678 1164.2 0.769
100.0% 13658 1.9 3.650 1124.1 0.768

Table 5.3 We check the tradeoff of including a large alphabet size. We train Senten-
cepiece Unigram tokenizers with a different target character coverage and observe the
resulting alphabet size, number of UNKs and tokenizer metrics. We observe that the
alphabet size grows with the coverage and the number of UNKs decreases, as expected.
We observe that at both extremes of the character coverage parameter, the vocabulary
allocation decreases. The results indicate that the alphabet size between 1000 and 5000
provides a good tradeoff between the number of UNKs and the allocation metrics, while
including all characters in the alphabet does not come with a significant decrease in the
allocation metrics (-0.05 CPT).

56

Tokenizer Alphabet # UNKs CPT AR JSD

Unigram 𝛼=0.0 2975 617.1 3.712 1212.9 0.767
Unigram 𝛼=0.3 2666 923.5 3.702 1190.7 0.768
Unigram 𝛼=0.5 2859 729.0 3.618 1143.8 0.769
Unigram 𝛼=0.7 2733 883.2 3.556 1107.1 0.770
Unigram 𝛼=1.0 2476 1286.3 3.442 1041.8 0.772

Table 5.4 We train five Sentencepiece Unigram tokenizers on increasingly imbalanced
multilingual dataset. We see that the macro averaged metrics decrease with the increas-
ing imbalance, suggesting that on average, the tokenizer represents the languages less
well.

large number of unknown tokens and the tokenizer is forced to segment words
containing characters outside of the alphabet, as these unknown tokens might
even be characters with diacritics. In the range of 1000-5000 alphabet size, we
see that the metrics are not largely affected by the alphabet size. On the other
extreme, where alphabet size is large, we suspect that the alphabet starts to take
up a larger portion of the vocabulary and the tokenizer has less capacity for
longer tokens which we observe as a lower overall CPT and AR. We note that the
observed differences are small and including all characters in the training set does
not come with a large decrease in our tokenizer metrics (-0.05 CPT and -70 AR
compared to 99.95% coverage). For later experiments, we use the Sentencepiece
default character coverage of 99.95%. When comparing tokenizers with different
alphabet sizes, we are aware of the fact that the metrics might be affected by the
alphabet size and we take this into account when interpreting the results.

5.3 Data imbalance
Finally, we investigate, how the training data imbalance between high-resource
and low-resource languages affects the tokenizer performance.

The results in Table 5.4 demonstrate a clear disparity in the quality of to-
kenization depending on the data balance. Training on balanced data leads to
higher overall metrics than on unbalanced data 4. The imbalance also affects the
alphabet size as it is possible to cover 99.95% of the characters in the training data
with a smaller alphabet because of the overrepresentation of a few high-resource
languages.

4This is naturally affected by the evaluation scheme where we weight each language equally.
The equal weighting is in line with our goal of improving the tokenization for all represented
languages as explained in subsection 3.5.2

57

en vi ru fr deesthbghezh el tr ar hi takaur temrsw
Language

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Ch
ar

ac
te

rs
 p

er
 to

ke
n

Alpha
0.0
0.3
0.5
0.7
1.0

en vi ru fr deesthbghezh el tr ar hi takaur temrsw
Language

1000

750

500

250

0

250

500

750

1000

Av
er

ag
e

ra
nk

Difference in CPT and AR compared to the tokenizer with alpha=1.0

Figure 5.1 We examine the impact of the language imbalance on the Sentencepiece
Unigram tokenizer training. We train five tokenizers with an increasing language im-
balance controlled by the 𝛼 parameter. Then we look at the effect on the vocabulary
allocation metrics per language. We subtract the results using the most unbalanced
tokenizer with 𝛼 = 1.0. As expected, the more balanced tokenizers have higher vocab-
ulary allocation scores for low-resource languages and lower scores for high-resource
languages. Interestingly, the effect varies across languages. For example, the vocabulary
allocation of high-resource Vietnamese or French is not as affected by the decrease in
training data as English or Russian.

We explore the reason for the decreasing performance of the tokenizers trained
on imbalanced data in Figure 5.1. We plot the differences in vocabulary allocation
metrics between the most unbalanced tokenizer 𝛼 = 1.0 and the rest of the
tokenizers. We sort the languages by the data size available starting with the
highest-resource languages and ending with the low-resource. We see that the
vocabulary allocation metrics for the high-resource languages (en, vi, ru, fr, es, th)
are decreasing with the increasing data balance between the languages, compared
with the unbalanced baseline. On the other hand, the low-resource languages
(ka, ur, te, mr, sw) are disproportionally more improved by the increasing balance
and their vocabulary allocation metrics are increasing significantly. This suggests
that the marginal benefit of adding more data to the high-resource languages is
lower than the incurred cost on the quality of tokenization for the low-resource
languages. We see the result of this tradeoff in the Table 5.4 as an overall decrease
in the average CPT and AR.

We hypothesize, that a possible reason that the standard method of training a
tokenizer on a joint corpus was reported to not work by the existing works [7,
10, 11, 12] might be the data imbalance in the training data. Rust et al. [7] finds
the mBERT tokenizer trained with 𝛼 = 0.7 inadequate to represent low-resource

58

languages. Chung et al. [10] and Zheng et al. [11] use the Unigram baseline
with 𝛼 = 0.7. While Liang et al. [12] uses a baseline with 𝛼 = 0.5. All balancing
methods report the most substantial improvements on the low-resource languages.
In the next chapter, we will therefore compare the balancing methods with the
Sentencepiece Unigram trained on balanced and unbalanced data.

5.4 Findings
In this chapter, we have investigated Q3: What is the reason that the standard
tokenizer training method does not work well in the multilingual setting? To this
end, we explore how different design choices affect the quality of the tokenizers.

We find that the implementation of the Unigram algorithm in the Huggingface
library is subpar and that the Sentencepiece implementation yields better results.

We observe that we need around 100k-1M lines per language to train a good,
multilingual tokenizer.

The alphabet size affects the number of UNK tokens but does not have a
significant influence on the rest of the metrics if we stay in the range of 1000-5000
alphabet size.

Most importantly, we observe that tokenizer training data imbalance influ-
ences the per-language metrics heavily and that it lowers the tokenization quality
for the low-resource languages more than it improves it for the high-resource.

59

60

Chapter 6

Vocabulary balancing methods

Finally, we replicate theworks of Chung et al. [10], Zheng et al. [11], and Liang et al.
[12] (we colectivelly address these works as the ”vocabulary balancing methods”)
and create several variations of their tokenizers that aim to improve the text
segmentations, especially for the low-resource languages. We carefully compare
these replicated tokenizers with the traditional method of training Sentencepiece
Unigram tokenizers on a joint, multilingual corpus.

By comparing the balancing tokenizers, we aim to answer (Q4) what is the
effect of using the balancing methods on the representation of low-resource
languages? And (Q5) how do the balancing methods compare to the standard
method of training the tokenizer on balanced and unbalanced joint corpus?

Our method is to replicate and train all examined tokenizers. Then we perform
the intrinsic and extrinsic evaluation of the tokenizers. We examine closely the
overall perfomance, as well as the changes for the individual languages.

6.1 Experiments
Our experimental setup consists of comparing the vocabulary balancing tokeniz-
ers by Chung et al. [10], Zheng et al. [11], and Liang et al. [12] with the standard
Sentencepiece Unigram. We train the Unigram tokenizer on imbalanced and
balanced data as we have found this to be an important parameter that influences
the representation of low- and high- resource languages(section 5.3). For addi-
tional context, we also add the tokenizers from Chapter 4 for assessing the overall
tokenizer metrics.

To answerQ4 andQ5, we assess the tokenizers using our proposed vocabulary
allocation and vocabulary overlap metrics. We look at the overall statistics and
also more closely on the metrics computed per language. By assessing the metrics
per language, we examine what is the effect of the balancing methods on the

61

quality of representation of low-resource languages. Moreover, by comparing the
balancing methods with the standard Sentencepiece Unigram, we assess how are
the approaches related and how they differ.

After the intrinsic analysis, we select a representative subset of the repro-
duced tokenizers and compare them extrinsically by training masked language
models. We evaluate the models in the in-language and cross-language setting
on a selection of downstream tasks and assess the overall differences between
tokenizers. We further assess the (Q4) and investigate what is the effect of the
balancing methods on the performance of the models across languages. We also
further assess the (Q5) and compare the balancing methods with the standard
Sentencepiece Unigram in the extrinsic evaluation setting.

In this chapter, we compare the following tokenizers:

• Sentencepiece Unigram with 𝛼 = 0.0, 0.3, 0.5, 0.7, 1.0 (see section 5.3)

• Chung et al. [10] with 4, 8, 16, 20 clusters

• Zheng et al. [11] with the maximized ALP metric

• Liang et al. [12] with 4, 8, 16, 20 clusters

For additional context, we also include the following tokenizers fromChapter 4
in the overall intrinsic comparison of the tokenizers:

• Huggingface BPE with 𝛼 = 0.25

• Huggingface Unigram with 𝛼 = 0.25

• TokMix with 𝛼 = 0.25

• Sentencepiece BPE with 𝛼 = 0.25

We note that for Sentencepiece Unigram with 𝛼 = 0.0 and 0.3 we retrain the
tokenizers on 20M and 10M lines of data respectively (compared to 2M and 5M
from Table 5.4) to match the data provided to the replicated, balancing methods.
This does not increase the metrics by a lot as observed in subsection 5.2.2. Never-
theless, we decided to match the data sizes between the balancing methods and
the Unigram tokenizers.

For the extrinsic evaluation, we select 6 tokenizers. Namely, we select the
balancing methods by Chung et al. [10] and Zheng et al. [11]. For the Chung
clustering method, we select a low- and high- number of clusters 𝑘 = 4 and 16.
We compare the selected balancing tokenization methods to standard Unigram
tokenizers trained on differently balanced datasets with 𝛼 = 1.0, 0.3 and 0.0.

62

6.2 Results

6.2.1 Comparison of balancing methods
In Table 6.1, we compare overall metrics for all tokenizer experiments. We sort
the table by the CPT metric. At the extremes, we see that the unbalanced Unigram
tokenizers (𝛼 = 1.0, 0.7) are placed at the bottom of the results along with the
underperforming Huggingface Unigram implementation. On the other hand, we
see that generally, the standard tokenizers trained on a more balanced dataset
(𝛼 = 0.3, 0.0) provide good results on the CPT metric.

Next, we see that the Zheng method and clustering methods of Chung and
Liang with 20 and 16 clusters are close to the best tokenizers in terms of CPT. On
the other hand, clustering methods with a lower number of clusters are closer to
the unbalanced Unigram tokenizers (𝛼 = 1.0, 0.7).

We visualize our vocabulary allocation metrics on a scatterplot in Figure 6.1 to
better observe the differences between the tokenizers and explore the relationship
between CPT and AR. Each point on the scatterplot is one tokenizer and its
position is determined by the overall CPT and AR metrics. We connect related
experiments with a line and color-code them. Here we can see that the tokenizers
with high CPT often have high AR. Nevertheless, the balancing methods seem to
have generally lower AR while having a comparable CPT to the other methods1.
With the context of different tokenization methods, we can see the degree of
Huggingface Unigram’s underperformance.

Crucially, we see that the reproduced methods of Chung et al. [10], Zheng et al.
[11], and Liang et al. [12] do improve over the unbalanced baselines 𝛼 = 1.0, 0.7, 0.5
on the CPTmetric, especially with a higher number of clusters. On the other hand,
they do not outperform the simple case of training the Sentencepiece Unigram
on a balanced dataset 𝛼 = 0.0. We also observe that the clustering methods with
a higher number of clusters along with Zheng are close to each other on the
CPT-AR plot. We assume this is because, with higher 𝑘, the clustering methods
reduce to the Zheng method (training separate tokenizers for each language).
Similarly, with a lower number of clusters, the methods are much closer to the
vanilla Sentencepiece Unigram 𝛼 = 1.0 trained on the unbalanced dataset. We
hypothesize that with a low amount of clusters, the original data imbalance starts
to degrade performance for low-resource languages inside the clusters.

We also explore the relationship between vocabulary allocation and vocabu-
lary overlap on the Figure 6.2. We see that the differences between all methods
based on Sentencepiece are small compared to the differences between Hugging-

1We also observe that there are no tokenizers with low CPT but high AR Our intuition is that
it is not possible to construct a tokenizer with a high number of useful tokens which are all very
short.

63

Tokenizer Alphabet # UNKs CPT AR JSD

Hugg. BPE, 𝛼=0.25 1000 14040.1 3.713 1253.7 0.783
Unigram, 𝛼=0.0 2975 617.1 3.712 1212.9 0.767
Chung 20 clusters 4123 270.3 3.702 1098.7 0.766
Unigram, 𝛼=0.3 2666 923.5 3.702 1190.7 0.768
TokMix, 𝛼=0.25 2497 1203.2 3.691 1163.4 0.773
Chung 16 clusters 3933 387.1 3.677 1102.2 0.767
Liang 20 clusters 3709 341.4 3.676 1103.2 0.765
Zheng 20langs 4854 245.7 3.673 1094.5 0.765
Liang 16 clusters 3655 416.8 3.669 1106.2 0.767
Sentpiece. BPE, 𝛼=0.25 1215 7235.6 3.666 1212.9 0.774
Unigram, 𝛼=0.5 2859 729.0 3.618 1143.8 0.769
Chung 8 clusters 4870 684.4 3.575 1061.1 0.770
Unigram, 𝛼=0.7 2733 883.2 3.556 1107.1 0.770
Chung 4 clusters 3253 648.6 3.546 1071.9 0.768
Liang 8 clusters 4283 568.2 3.544 1081.6 0.767
Liang 4 clusters 3698 419.2 3.512 1082.5 0.769
Unigram, 𝛼=1.0 2476 1286.3 3.442 1041.8 0.772
Hugg. unigram, 𝛼=0.25 12616 4.5 3.204 1010.5 0.745

Table 6.1 In this summary table, we present all tokenizers used in this chapter. In the
table, we include the tokenizers obtained by replicating the papers Chung et al. [10],
Zheng et al. [11], and Liang et al. [12] in our setting. We also include the Huggingface
tokenizers from Table 4.1 and Sentencepiece Unigram tokenizers from Table 5.4. As we
can see, the Huggingface Unigram tokenizer is a clear outlier in terms of all metrics even
after taking in account the higher alphabet size as explored in Table 5.3. Further, we can
see that the clustering methods with a higher number of clusters are improving over the
baselines the authors used (Unigram, 𝛼=0.5 and Unigram, 𝛼=0.7). On the other hand, we
see that using more balanced data for training the Sentencepiece Unigram (Unigram,
𝛼=0.0) leads to better overall performance compared to the replicated methods. We note
that the alphabet sizes for all relevant tokenizers stay in the stable range of 1000-5000 so
we do not expect this variable to influence the tokenizer metrics. The rows are sorted by
the CPT score.

64

1000 1050 1100 1150 1200 1250
AR

3.2

3.3

3.4

3.5

3.6

3.7

CP
T

k=4

k=8

k=16

k=20

k=4

k=8

k=16

k=20

Zheng

sentencepiece_bpe

huggingface_bpe

TokMix

huggingface_unigram

=0.0

=0.3

=0.5
=0.7

=1.0

Huggingface
Unigram
Chung
Zheng
Liang
SentencePiece BPE

Figure 6.1 We visualize the overall vocabulary allocation metrics for all tokenizers
from Table 6.1. We observe that the vocabulary allocation scores are related — higher
AR usually means higher CPT. We also observe that Huggingface Unigram is a clear
outlier, although a combination of separate, monolingual Huggingface Unigrams (TokMix)
approaches the performance of the Sentencepiece Unigram with the corresponding data
imbalance (𝛼 = 0.3). We see that the balancing methods overperform the unbalanced
Unigrams (𝛼 = 1.0, 𝛼 = 0.7) in terms of CPT but perform similarly or worse to the simple
case of running the Sentencepiece Unigram trainer on a balanced set 𝛼 = 0.0.

65

1000 1050 1100 1150 1200 1250
AR

0.745

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

JS
D

k=4
k=8 k=16

k=20

k=4

k=8 k=16

k=20
Zheng

sentencepiece_bpe

huggingface_bpe

TokMix

huggingface_unigram

=0.0
=0.3

=0.5
=0.7

=1.0

Huggingface
Unigram
Chung
Zheng
Liang
SentencePiece BPE

Figure 6.2 We visualize the tokenizers from Table 6.1 in terms of Average Rank and
Jensen-Shannon Divergence. Here we can see that all methods based on Sentencepiece
result in similar overlap independent of the allocation. This is interesting because the
replicated balancing methods (Chung, Zheng, Liang) work by splitting the data and
training separate tokenizers. Nevertheless, after merging the separate subtokenizers they
all seem to end up with similar vocabulary overlaps. The highest vocabulary isolation
is surprisingly achieved by the Huggingface BPE tokenizer, which is contrary to the
hypothesis stated by Chung et al. [10] and Zheng et al. [11] that the tokenizers trained
on the concatenation of all data tend to select subwords shared across all languages.

66

en vi ru fr de es th bghe zh el tr ar hi ta ka ur te mrsw
lang

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

cp
t

name
0.0
0.3
0.5
0.7
1.0
Zheng_20langs

en vi ru fr de es th bghe zh el tr ar hi ta ka ur te mrsw
lang

1000

500

0

500

1000

ar

Difference in CPT and AR compared to the tokenizer with alpha=1.0

Figure 6.3 We zoom into the results of the Zheng method and compare the vocabulary
allocation across the individual languages represented by this tokenizer against the
backdrop of the vanilla Unigram tokenizers trained with different data imbalances from
5.1. We observe a striking similarity between the vocabulary allocation of the Zheng
tokenizer and the Unigram tokenizer with 𝛼 = 0.0, especially in terms of characters
per token. This comes as a large surprise because the Zheng method works by training
a separate tokenizer for each language and then merging them. Despite the different
methods of obtaining the vocabulary, the resulting tokenizers are very similar across the
languages.

face tokenizers. This is surprising because the assumption shared by all authors
of the balancing methods is that by training separate tokenizers, we achieve
lower overlap between unrelated languages. Nevertheless, we see that the overall
overlap is largely similar and more influenced by the choice of implementation.

If we ignore the Huggingface outliers and interpret only the differences in
the overlap between the balancing methods, we still see a counterintuitive trend
where the Zheng method and a higher number of clusters have a larger overlap
in vocabulary between languages (lower JSD) than the standard tokenizers and
clustering methods with lower number of clusters.

6.2.2 Comparison of balancing methods per language

We investigate the differences between the balanced Unigram and the replicated
methods in more detail by examining the CPT and AR metrics computed per
language. This way we can better assess (Q4) how the methods improve the low-
resource languages. We also more closely compare (Q5) the balancing methods
with the Unigram tokenizers trained on different data imbalances. We do this by
plotting only the differences per language between the methods and the Unigram

67

en vi ru fr de es th bg he zh el tr ar hi ta ka ur te mr sw
lang

20

0

20

40

60

80

al
p

name
0.0
0.3
0.5
0.7
1.0
Zheng_20langs

Difference in ALP compared to the tokenizer with alpha=1.0

Figure 6.4 Intrigued by the similarity between the Zheng tokenizer and the Unigram
tokenizer with 𝛼 = 0.0 from Figure 6.3 we also look at the ALP metric which is used for
the selection of vocabulary sizes in the Zheng method. Here we see that the greedy
optimization of ALP across languages indeed results in a similar vocabulary allocation
as the Unigram tokenizer with 𝛼 = 0.0.

tokenizer with the highest imbalance 𝛼 = 1.0 similar to what we did in Figure 5.1.
We start by comparing the Zheng method with the increasingly imbalanced

Unigram tokenizers in Figure 6.3. We plot the increase or decrease in vocabulary
allocation metrics for each language sorted by the data available. Remarkably,
we see that the Zheng method is strikingly similar in terms of CPT and AR per
language to the Unigram tokenizer trained on the balanced set 𝛼 = 0.0. The
similarity seems to be higher in the CPT metric although the AR metric is also
similar especially for the highest and lowest resource languages. We find this
observation quite surprising because of the distinctness of the Zheng method —
it trains a separate tokenizer for each language and then merges the vocabularies
together. Nevertheless, the resulting tokenizer is very similar to the Unigram
tokenizer trained on the joint, balanced set.

Intrigued by the similarity between the Zheng tokenizer and the Unigram
tokenizer with 𝛼 = 0.0, we also look at the differences in ALP metric which is
used for the selection of vocabulary sizes in the Zheng method. In Figure 6.4
we see that the greedy optimization of ALP across languages indeed results in a
similar vocabulary allocation as the Unigram tokenizer with 𝛼 = 0.0.

Next, we inspect the Chung method and compare it in detail to our Unigram
tokenizers in Figure 6.5. For comparison, we select a run with a low number of
clusters (k=4) and a high number of clusters (k=16). We see that the different
numbers of clusters yield different results. In the case of a higher number of
clusters, we see that the tokenizer exhibits a similar trend in CPT and AR across
the languages as the balanced Unigram tokenizer with 𝛼 = 0.0 albeit with some

68

en vi ru fr de es th bghe zh el tr ar hi ta ka ur te mrsw
lang

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

cp
t

name
0.0
0.3
0.5
0.7
1.0
Chung_4clusters
Chung_16clusters

en vi ru fr de es th bghe zh el tr ar hi ta ka ur te mrsw
lang

1000

500

0

500

1000

ar

Difference in CPT and AR compared to the tokenizer with alpha=1.0

Figure 6.5 Here we inspect the language-level vocabulary allocation of the Chung
method. We see that the Chung method with higher number of clusters (k=16) resembles
the Unigram tokenizer with 𝛼 = 0.0 with large drops in allocation for Bulgarian (bg),
Urdu (ur), Marathi(mr) and to a lesser degree French (fr). The lower number of clusters
(k=4) differs more from the Unigram tokenizers. We see large increases in allocation for
Thai (th), Hebrew (he), Greek (el), and Hindi (hi) and large decreases for Bulgarian (bg),
Turkish (tr), Arabic (ar), and Swahili (sw).

deviations. In the case of a lower number of clusters, the metrics per language
seem to be more distinct compared to our Unigram tokenizers.

We look at the CPT per language for k=16 more closely and identify the
languages where the Chung tokenizer differs significantly from the Unigram
tokenizer with 𝛼 = 0.0. We see that the CPT drops significantly for Bulgarian
(bg), Urdu (ur), Marathi (mr), and to some degree French (fr). On the other hand,
we see smaller improvements for English (en), Vietnamese (vi), Spanish (es), Thai
(th), Hindi (hi), and Tamil (ta). We compare this to the cluster assignments in
Figure 3.7a. Revealingly, we observe that all languages with the large drop in
CPT have been assigned to a cluster with another, higher-resource language.
Bulgarian is assigned with Russian (8th largest corpus versus 3rd largest corpus),
Urdu with Arabic (17th vs. 13th), Marathi with Hindu (18th vs. 14th) and French
with English (4th vs. 1st). This seems to be in line with our hypothesis that
inside clusters, the data imbalance may hurt the representation of low-resource
languages.

We continue with a similar analysis for the 4 clusters. We see that the CPT
for Bulgarian (bg), Turkish (tr), Arabic (ar), and Swahili (sw) is lower than any of
our Unigram tokenizers. On the other hand, we see significant improvements for
Thai (th), Hebrew (he), Greek (el), and Hindi (hi) over our Unigram tokenizers.
Additionally, Marathi (mr) achieves the highest CPT increase over the unbalanced

69

en vi ru fr de es th bghe zh el tr ar hi ta ka ur te mrsw
lang

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

cp
t

name
0.0
0.3
0.5
0.7
1.0
Liang_4clusters
Liang_16clusters

en vi ru fr de es th bghe zh el tr ar hi ta ka ur te mrsw
lang

1000

500

0

500

1000

ar

Difference in CPT and AR compared to the tokenizer with alpha=1.0

Figure 6.6 We inspect the language-level vocabulary allocation of the Liang method.
We see similarities to the Chung method in Figure 6.5. The main differences seem to be
the improved Chinese and Arabic for 4 clusters and worse Hebrew and better Urdu for
16 clusters. Overall the results are similar.

Unigram baseline, although the increase stays in the range of the 𝛼 = 0.5 Unigram
tokenizer. We again look at the cluster assignments in Figure 3.5a. We observe
that Bulgarian and Arabic are assigned to a cluster with higher-resource Russian
(3rd) and Chinese, which could explain the decrease in CPT for the two. Similarly,
Swahili and Turkish which use the Latin script are assigned to a cluster with
higher resource English (largest corpus) and Vietnamese (2nd largest). On the
other hand, we see that Thai, Hebrew, and Greek are assigned to a cluster with
lower-resource languages — Tamil (ta), Georgian (ka), Urdu (ur), and Telugu (te).
As we have observed, Thai, Hebrew, and Greek benefit from this assignment
while the lower-resource languages seem to have a lower CPT than the 𝛼 = 0.7
Unigram and therefore approach the unbalanced baseline.

We look at the Liang et al. [12] replication results in Figure 6.6. We see that
despite a slightly different clustering method and per-cluster vocabulary size
selection, the Liang method exhibits similar patterns we observed in the Chung
method.

Overall, we infer that the Chung and Liang methods are sensitive to cluster
assignments. Because the training data are merged per cluster, if a low-resource
language gets assigned to a cluster with a high-resource language, the language
imbalance acts in favor of the high-resource language. As we know from our
experiments in section 5.3 presented previously, the benefit of adding more data to
the high-resource language is lower than the cost that incurs on the low-resource
language. We believe this is the cause of the lower overall CPT and AR for the
clustering methods.

70

6.2.3 Comparison of balancing methods on downstream
tasks

We validate our observations from the previous subsection 6.2.2 by evaluating
the tokenizers extrinsically. We again address (Q4) and (Q5) and investigate
the differences between the balancing methods and the Sentencepiece Unigram
tokenizers. In this section, however, we focus on the actual influence of the
tokenizers on themultilingual languagemodels and assess the differences between
tokenizers by the performance on downstream tasks.

We select the balancing methods by Chung et al. [10] and Zheng et al. [11]. For
the clustering method, we select a low- and high- number of clusters 𝑘 = 4 and 16.
We compare the selected balancing tokenization methods to the standard Unigram
tokenizers trained on differently balanced datasets with 𝛼 = 1.0, 0.3 and 0.0

Overall in-language and cross-language results

In Figure 6.7, we report the overall in-language and cross-language results for
the models. We observe the clearest regularity in cross-language performance
for word-level tasks (NER and POS), where all balancing methods and Unigram
𝛼 = 0.0, 0.3 improve over the unbalanced 𝛼 = 1.0 model. Next, we see higher POS
in-language scores for the Chung methods and higher NER in-language scores for
the balanced unigrams (𝛼 = 0.0 and 0.3). For in-language NLI, we do not see any
systematic effect — the differences between the models are small (< 1 percentage
point) and the outlier behavior of 𝛼 = 0.3 compared to 𝛼 = 1.0 and 0.0 suggests
that the variance is caused by the finetuning rather than any tokenizer effect.

In-language and cross-language results examined by language

We inspect the results more closely on the language level. We again compare the
performance of the more balanced models to the unbalanced model by plotting
the difference in accuracy and F1 score for the tasks by language. The languages
are again sorted in descending order based on the amount of available data.

In Figure 6.8, we see the in-language results laid out by language. We see
a large effect of the probe training language on the NER F1 score and to some
degree an effect on the POS F1. We do not see a systematic effect on NLI. For NER,
we see the effect of the tokenizer language balance reminiscent of the results in
Figure 6.3 and Figure 6.5. For high-resource languages, we observe a decrease in
performance across the board. This is counterbalanced by a larger increase in
performance for the low-resource languages. This effect seems to be largest for
the 𝛼 = 0.0 Unigram tokenizer, Zheng method and Chung with 16 clusters. For
𝛼 = 0.3 Unigram and Chung with 4 clusters, we see a similar effect but with a

71

0.520

0.525

0.530

0.535

0.540

ac
cu

ra
cy

XNLI_probe In-language accuracy (all languages)

0.50

0.51

0.52

0.53

0.54

f1

NER_probe In-language f1 (all languages)

un
ig

ra
m

_a
lp

ha
1.

0
un

ig
ra

m
_a

lp
ha

0.
3

un
ig

ra
m

_a
lp

ha
0.

0

Zh
en

g

Ch
un

g_
4c

lu
st

er
s

Ch
un

g_
16

clu
st

er
s

model

0.83

0.84

0.85

f1

POS_probe In-language f1 (all languages)

(a) In-language results

0.36

0.37

0.38

0.39

0.40

ac
cu

ra
cy

XNLI_probe Cross-language accuracy

0.14

0.16

0.18

0.20

f1

NER_probe Cross-language f1

un
ig

ra
m

_a
lp

ha
1.

0
un

ig
ra

m
_a

lp
ha

0.
3

un
ig

ra
m

_a
lp

ha
0.

0

Zh
en

g

Ch
un

g_
4c

lu
st

er
s

Ch
un

g_
16

clu
st

er
s

model

0.32

0.34

0.36

f1
POS_probe Cross-language f1

(b) Cross-language results

Figure 6.7 We select the replicated methods by Chung et al. [10] and Zheng et al. [11]
and compare them with the vanilla Unigram tokenizers. For comparison, we choose
the unbalanced Unigram tokenizer with 𝛼 = 1.0 and then two stronger baselines with
𝛼 = 0.0 and 𝛼 = 0.3 trained on more balanced data. We then pretrain masked language
models that differ only in the tokenizer they use and assess the performance of these
models on the downstream tasks using probing. We test two settings — in-language
performance, where the model is trained on each of the available languages and then
evaluated on the same language, and cross-language performance, where the model is
also trained on each language but evaluated on all but the training language. The results
are a macro average over all the languages (in-language results) or all language pairs
(cross-language results). For each model, language, and task we do 3 probe training runs
with different random seeds. The error bars represent one standard deviation computed
with bootstrapping by randomly sampling seeds for each language.

72

en vi ru fr de es th bg zh el tr ar hi ur sw
0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

ac
cu

ra
cy

_d
el

ta
XNLI_probe accuracy delta over the baseline by language and model

unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

en vi ru fr de es th bg he zh el tr ar hi ta ka ur te mrsw

0.04

0.02

0.00

0.02

0.04

0.06

0.08

f1
_d

el
ta

NER_probe f1 delta over the baseline by language and model
unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

en vi ru fr de es bg he zh el tr ar hi ta ur te mr
lang_tgt

0.10

0.05

0.00

0.05

0.10

0.15

f1
_d

el
ta

POS_probe f1 delta over the baseline by language and model
unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

Figure 6.8 We zoom in on the in-language results from Figure 6.7a and compare the
performance of the balanced tokenizers against the unbalanced Unigram tokenizer with
𝛼 = 1.0 over all tested languages for the tasks. In the case of the word-level tasks,
especially in the case of named entity recognition, we observe a clear trend in line
with our tokenizer investigations in 6.5. The balancing methods improve the language
representations for word-level tasks. For the sentence-level tasks, we do not observe any
systematic effects. The error bands are one standard deviation computed from the three
probe training runs with different random seeds.

73

smaller magnitude, which is in line with our previous observations in Figure 6.5
in the intrinsic evaluation. In the case of POS, we do see more variance in results
towards the low-resource languages but the effect is not as clear as for NER.
We see significant improvements with Zheng and Chung methods on Chinese
which correspond to the AR improvement for Chinese for the Zheng method in
Figure 6.3 but we do not see any difference in Chinese tokenizer metrics in the
case of Chung (Figure 6.5). We also see some improvements in Hindi, Tamil, and
Marathi. For Telugu, we see a surprising drop for all methods except Chung with
4 clusters.

We turn our attention to the cross-language results in Figure 6.9. Here we
again do not see any patterns in the NLI task, other than an overall drop in
performance for Chung with 4 clusters, for which we do not have an explanation.
On the other hand, we see clear patterns in NER and POS tasks. For both tasks,
we see that the performance for low-resource languages is improved over the
unbalanced baseline. Moreover, we see that the balancing has a net positive effect
even for the high-resource languages, although the effect is not as pronounced as
for the low-resource languages. In the NER task, we see that the Chung method
with 4 clusters does not seem to improve on low-resource language as much as
the other methods.

Direct comparison between intrinsic and extrinsic metrics

Lastly, we plot the differences in tokenizer metrics against the differences in
downstream task scores in scatter matrices. This allows us to directly compare the
relationship between intrinsic tokenizer metrics and downstream performance.

In Figure 6.10 we show the in-language results and in Figure 6.11 we show
the cross-language results.

In the case of in-language results, we see that for the NER and POS tasks, there
is a significant Spearman correlation between the differences in tokenizer metrics
and the differences in task performance (0.84 and 0.34 Spearman correlation
respectively). For the NLI task, we do not observe any significant correlations.
This is in line with our observations from the language-level results (Figure 6.8).

In the case of cross-language results, we observe significant, low, negative
Spearman correlations between JSD and word-level tasks NER and POS (-0.21
and -0.22 respectively). We also see significant correlations between combined
CPT/AR and all downstream tasks (0.14 for NLI, 0.39 for NER, and 0.29 for POS).
The negative correlation between JSD and word-level tasks is at odds with our
finding in Chapter 4 and supports our hypothesis that the correlation between
JSD and downstream performance is confounded by the vocabulary allocation.
The positive correlation between CPT/AR and downstream performance is in line
with our findings in Chapter 4 and suggests that the downstream performance

74

en vi ru fr de es th bg zh el tr ar hi ur sw

0.03

0.02

0.01

0.00

0.01

0.02

ac
cu

ra
cy

_d
el

ta
XNLI_probe Cross-language accuracy delta over the baseline

unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

en vi ru fr de es th bg he zh el tr ar hi ta ka ur te mrsw
0.02

0.00

0.02

0.04

0.06

0.08

f1
_d

el
ta

NER_probe Cross-language f1 delta over the baseline
unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

en vi ru fr de es bg he zh el tr ar hi ta ur te mr
lang_tgt

0.02

0.00

0.02

0.04

0.06

f1
_d

el
ta

POS_probe Cross-language f1 delta over the baseline
unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

Figure 6.9 Here we investigate in detail the cross-lingual results from Figure 6.7b
with comparison to the unbalanced Unigram tokenizer with 𝛼 = 1.0. We observe that
word-level task transfers behave in line with the tokenizer investigations in 6.5. Moreover,
it seems that both high-resource and low-resource languages benefit from the balancing
methods, although the change is most clear on the low-resource side. For the sentence-
level tasks, we do not observe any systematic effects. The value for each language and
model is computed by averaging the difference in cross-lingual performance for the given
target language over the baseline.

75

is positively influenced by the increase in token length in source and target
languages. 2

Conclusion of the extrinsic evaluation

Collecting all our observations together, we see that the tokenizers that aim to
balance low-resource and high-resource languages do influence the results of
downstream tasks compared to an unbalanced tokenizer. We see that the effect
varies by task and language.

Generally, we see a high influence on word-level tasks (NER and POS) and
no significant influence on NLI. The effect of balancing is most prominent for in-
language NER and cross-language NER and POS. Interestingly, in cross-language,
the balancing effect is a net positive even for the high-resource languages.

For all cases where the balancing effect is clear (NER in-language, NER/-
POS cross-language), the best overall performance is achieved by the Unigram
tokenizer trained on a balanced train set with 𝛼 = 0.0 and 0.3 (Figure 6.7).

6.3 Findings

Wefind that the balancingmethods of Chung et al. [10], Zheng et al. [11], and Liang
et al. [12] improve the representation of low-resource languages by increasing the
vocabulary allocation for these languages at the cost of lowering the vocabulary
allocation for the high-resource ones.

We also find that the Unigram tokenizer trained with a balanced dataset
(𝛼 = 0.0) achieves a similar effect as the replicated methods.

We find a striking similarity between the Unigram tokenizer trained on a
balanced dataset and the Zheng method. We find that by maximizing the ALP
across languages, Zheng method achieves a similar effect to running an Unigram
tokenizer training on a balanced dataset.

We find that the clustering methods with a high number of clusters behave
similarly to the Unigram tokenizer trained on a balanced dataset with exceptions
of the low-resource languages, that happen to be clustered together with high-
resource ones. We assume that the reason is that the clustering methods with a
high 𝑘 are similar to the Zheng method in that they train separate tokenizers for
the majority of languages and only a few languages are grouped together.

2A possible explanation of the contradictory findings of the JSD influence may be observed
in the summary plot Figure 6.2. We see that in our first batch of Huggingface experiments JSD
correlates positively with AR, on the other hand the current batch of experiments shows a negative
correlation.

76

0.5

0.0

0.5

1.0

cp
t

r = 0.98
p = 0.000

r = 0.12
p = 0.263

r = 0.84
p = 0.000

r = 0.34
p = 0.000

1500

1000

500

0

500

1000

ar

r = 0.98
p = 0.000

r = 0.12
p = 0.268

r = 0.84
p = 0.000

r = 0.32
p = 0.001

0.02
0.01
0.00
0.01
0.02
0.03
0.04

XN
LI

_p
ro

be

r = 0.12
p = 0.263

r = 0.12
p = 0.268

r = 0.30
p = 0.005

r = 0.39
p = 0.000

0.04

0.02

0.00

0.02

0.04

0.06

NE
R_

pr
ob

e

r = 0.84
p = 0.000

r = 0.84
p = 0.000

r = 0.30
p = 0.005

r = 0.37
p = 0.000

1 0 1 2
cpt

0.050

0.025

0.000

0.025

0.050

0.075

PO
S_

pr
ob

e

r = 0.34
p = 0.000

2000 0 2000
ar

r = 0.32
p = 0.001

0.0250.000 0.025 0.050
XNLI_probe

r = 0.39
p = 0.000

0.10 0.05 0.00 0.05 0.10
NER_probe

r = 0.37
p = 0.000

0.05 0.00 0.05 0.10
POS_probe

Tokenizer
unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

Figure 6.10 We visualize the in-language results from Figure 6.7a in a scatter matrix.
We substract mean result across three tokenization mwethods from per-language results.
We see significant Spearman correlations for the NER and POS tasks, although for POS
the correlation is low. For the NLI task, we do not observe any significant correlations.

77

0.06

0.04

0.02

0.00

0.02

jsd

r = -0.25
p = 0.000

r = -0.17
p = 0.000

r = -0.02
p = 0.563

r = -0.21
p = 0.000

r = -0.22
p = 0.000

0.75

0.50

0.25

0.00

0.25

0.50

m
ea

n_
cp

t

r = -0.25
p = 0.000

r = 0.88
p = 0.000

r = 0.14
p = 0.000

r = 0.39
p = 0.000

r = 0.29
p = 0.000

500

250

0

250

500

750

m
ea

n_
ar

r = -0.17
p = 0.000

r = 0.88
p = 0.000

r = 0.13
p = 0.000

r = 0.37
p = 0.000

r = 0.24
p = 0.000

0.04

0.02

0.00

0.02

0.04

0.06

XN
LI

_p
ro

be

r = -0.02
p = 0.563

r = 0.14
p = 0.000

r = 0.13
p = 0.000

r = 0.05
p = 0.084

r = -0.02
p = 0.626

0.10

0.05

0.00

0.05

0.10

NE
R_

pr
ob

e

r = -0.21
p = 0.000

r = 0.39
p = 0.000

r = 0.37
p = 0.000

r = 0.05
p = 0.084

r = 0.22
p = 0.000

0.075 0.050 0.0250.000 0.025
jsd

0.05

0.00

0.05

PO
S_

pr
ob

e

r = -0.22
p = 0.000

1.0 0.5 0.0 0.5
mean_cpt

r = 0.29
p = 0.000

500 0 500 1000
mean_ar

r = 0.24
p = 0.000

0.05 0.00 0.05
XNLI_probe

r = -0.02
p = 0.626

0.1 0.0 0.1
NER_probe

r = 0.22
p = 0.000

0.10 0.05 0.00 0.05 0.10
POS_probe

Tokenizer
unigram_alpha1.0
unigram_alpha0.3
unigram_alpha0.0
Zheng
Chung_4clusters
Chung_16clusters

Figure 6.11 We visualize the cross-language results from Figure 6.7b in a scatter matrix.
We substract mean performance across the three models from the language pairs results
of vocabulary overlap metric (JSD) and the combined CPT/AR of the source and target
languages. We see significant, low negative correlations between JSD and F1 scores for
the NER and POS tasks and higher, significant correlations between combined CPT and
F1 scores. This suggests that the word-level tasks benefit only slightly from an increase in
overlap (decrease in JSD) and an increase in token length in source and target languages.
For the NLI task, we observe a significant, low correlation between combined CPT/AR
and NLI accuracy. This suggests that the cross-lingual transfer for sentence-level tasks
benefits very slightly from an increase in allocation in source and target languages.

78

On the other hand, we find that the clustering methods with lower number
of clusters yield more distinct results. Nevertheless, we observe that they are
even more susceptible to a decrease in performance when high-resource and
low-resource languages are assigned to the same cluster.

By running the extrinsic evaluation, we validate the observations we made
using the intrinsic evaluation. We find that the balancing methods improve
the word-level tasks for low-resource languages while having no impact on the
sentence-level task.

Interestingly, we also find that the balancing has a net-positive effect for
cross-lingual transfer across all languages.

Our findings suggest that in our scaled-down setting of 20 languages and 120k
vocabulary size, the simpler method of training a standard Unigram tokenizer on
a joint, balanced corpus is sufficient to create a good multilingual vocabulary that
represents all languages well.

79

80

Chapter 7

Conclusion

In this thesis, our main focus was to explore the characteristics of tokenization
methods for multilingual models and investigate their impact on language model
representation quality.

To this end, we proposed a set of metrics for measuring the vocabulary
allocation and overlap of tokenizer vocabularies. We compared our metrics to
existing ones and we proposed a set of experiments to validate the usefulness of
our metrics and investigate the properties of tokenization methods.

We found that our metrics are useful for assessing the differences between tok-
enization methods and that vocabulary allocation and overlap are good predictors
of language model performance for word-level tasks. Especially when considering
word-level downstream tasks, the learned contextualized representations are bet-
ter when the tokenizer segments the text into longer tokens (high characters per
token), when the tokenizer allocates tokens more uniformly (high average rank),
and when there is less overlap between the languages (high Jensen-Shannon
divergence).

With our established methodological framework, we then investigated the
reasons for the subpar performance of standard tokenization methods in the
multilingual setting. We demonstrated that to train a satisfactory tokenizer, we
need around 100k to 1M lines of text per language. We also showed that the
alphabet size does not largely affect our proposed metrics and that the default
setting of covering 99.95% of Unicode characters leads to a well performing
tokenizer.

We found that the main factors impacting the tokenization quality are the
choice of implementation and data imbalance. We found that the Huggingface
library yields subpar Unigram tokenizers and using the original Sentencepiece
library mitigates a large gap in vocabulary allocation metrics we observed. More
importantly, our research highlighted the strong impact of the data imbalance
between high-resource and low-resource languages on the resulting tokenizer.

81

Our experiments indicate, that the standard tokenizer training method is
susceptible to training data imbalance which leads to a decrease in tokenization
quality for the low-resource languages. Sampling data uniformly from each
language during the tokenizer training mitigates this effect and leads to a better
tokenization for the underresourced languages at a smaller cost on the high-
resource.

After investigating the standard tokenization scheme, we turned our attention
to three existing works by Chung et al. [10], Zheng et al. [11], and Liang et al. [12]
proposed for improving tokenization for low-resource languages. We identified
that these vocabulary balancing methods use a highly unbalanced baseline to
report their empirical improvements. We therefore investigated, how exactly
these methods improve the tokenization quality for low-resource languages and
how they compare to the standard method of training the tokenizer on a balanced
and unbalanced joint corpus.

We found a surprising correspondence between the balancing methods and
the Unigram tokenizer trained on a uniformly sampled dataset. We found that the
balancing methods improve the tokenization quality for low-resource languages
by increasing the vocabulary allocation for these languages at the cost of lowering
the vocabulary allocation for the high-resource ones, similar to the standard
method trained on uniformly sampled languages. Moreover, we found that the
methods based on clustering are susceptible to a decrease in performance when
high-resource and low-resource languages are assigned to the same cluster.

Our findings show that for all methods, the improvements on low-resource
representation translate to improvement in word-level tasks in both in-language
setting as well as cross-lingual transfer.

Overall, our findings contribute to understanding tokenization methods for
multilingual models. We propose a methodology for assessing the differences
between tokenizers, emphasize the importance of selecting appropriate implemen-
tation, training parameters and data balance, and we show that with proper care,
the simpler tokenization method of training a tokenizer on joint, multilingual
corpus can achieve similar results to the balancing methods in our experimental
setting.

7.1 Limitations and future work
Lastly, we acknowledge that due to computational limitations, we were not able to
compare tokenizers on a larger scale. The language models were scaled down, the
training data subsampled, vocabulary size reduced, and the number of languages
limited to 20. We believe that our methodology is a contribution in itself and
following it leads to a better understanding of the reasons for the differences

82

between tokenizers. On the other hand, we are aware that the findings of our
experiments are limited to the experimental setting we used.

For future work, we would like to explore our research questions on a larger
scale. Moreover, it would be interesting to investigate deeper the Huggingface BPE
tokenizer as we found it to have the best overall performance in our experiments.

83

84

Bibliography

[1] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, June 2019, pp. 4171–
4186. doi: 10.18653/v1/N19-1423. url: https://aclanthology.org/
N19-1423 (visited on 05/14/2023).

[2] Alec Radford et al. “Improving language understanding by generative pre-
training”. In: (2018).

[3] Karthikeyan K et al. “Cross-Lingual Ability of Multilingual BERT: An
Empirical Study”. en. In: Feb. 2022. url: https://openreview.net/
forum?id=HJeT3yrtDr (visited on 03/30/2023).

[4] Alexis Conneau et al. “Unsupervised Cross-lingual Representation Learn-
ing at Scale”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguis-
tics, July 2020, pp. 8440–8451. doi: 10.18653/v1/2020.acl-main.747.
url: https://aclanthology.org/2020.acl-main.747 (visited on
02/04/2023).

[5] Alexis Conneau et al. “Unsupervised Cross-lingual Representation Learn-
ing at Scale”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguis-
tics, July 2020, pp. 8440–8451. doi: 10.18653/v1/2020.acl-main.747.
url: https://aclanthology.org/2020.acl-main.747 (visited on
02/04/2023).

[6] Kaj Bostrom and Greg Durrett. “Byte Pair Encoding is Suboptimal for Lan-
guage Model Pretraining”. In: Findings of the Association for Computational
Linguistics: EMNLP 2020. Online: Association for Computational Linguistics,
Nov. 2020, pp. 4617–4624. doi: 10.18653/v1/2020.findings-emnlp.
414. url: https://aclanthology.org/2020.findings-emnlp.414
(visited on 02/28/2023).

85

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://aclanthology.org/2020.findings-emnlp.414

[7] Phillip Rust et al. “How Good is Your Tokenizer? On the Monolingual
Performance of Multilingual Language Models”. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Online: Association for Computational Linguistics, Aug. 2021,
pp. 3118–3135. doi: 10.18653/v1/2021.acl-long.243. url: https:
//aclanthology.org/2021.acl-long.243 (visited on 03/01/2023).

[8] Taku Kudo and John Richardson. “SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Process-
ing”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Brussels, Belgium: Associa-
tion for Computational Linguistics, Nov. 2018, pp. 66–71. doi: 10.18653/
v1/D18-2012. url: https://aclanthology.org/D18-2012 (visited on
02/14/2023).

[9] Thamme Gowda and Jonathan May. “Finding the Optimal Vocabulary Size
for Neural Machine Translation”. In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2020. Online: Association for Computational
Linguistics, Nov. 2020, pp. 3955–3964. doi: 10.18653/v1/2020.findings-
emnlp.352. url: https://aclanthology.org/2020.findings-emnlp.
352 (visited on 03/23/2023).

[10] Hyung Won Chung et al. “Improving Multilingual Models with Language-
Clustered Vocabularies”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, Nov. 2020, pp. 4536–4546. doi: 10.18653/
v1/2020.emnlp-main.367. url: https://aclanthology.org/2020.
emnlp-main.367 (visited on 07/20/2023).

[11] Bo Zheng et al. “Allocating Large Vocabulary Capacity for Cross-Lingual
Language Model Pre-Training”. en. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing. Online and Punta
Cana, Dominican Republic: Association for Computational Linguistics,
2021, pp. 3203–3215. doi: 10.18653/v1/2021.emnlp-main.257. url:
https : / / aclanthology . org / 2021 . emnlp - main . 257 (visited on
02/02/2023).

[12] Davis Liang et al. XLM-V: Overcoming the Vocabulary Bottleneck in Multi-
lingual Masked Language Models. en. arXiv:2301.10472 [cs]. Jan. 2023. url:
http://arxiv.org/abs/2301.10472 (visited on 02/01/2023).

[13] Tomasz Limisiewicz, Jiří Balhar, and David Mareček. “Tokenization Impacts
Multilingual Language Modeling: Assessing Vocabulary Allocation and
OverlapAcross Languages”. In: Findings of the Association for Computational

86

https://doi.org/10.18653/v1/2021.acl-long.243
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2021.acl-long.243
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/D18-2012
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://aclanthology.org/2020.findings-emnlp.352
https://aclanthology.org/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://aclanthology.org/2020.emnlp-main.367
https://aclanthology.org/2020.emnlp-main.367
https://doi.org/10.18653/v1/2021.emnlp-main.257
https://aclanthology.org/2021.emnlp-main.257
http://arxiv.org/abs/2301.10472

Linguistics: ACL 2023. Toronto, Canada: Association for Computational
Linguistics, July 2023, pp. 5661–5681. url: https://aclanthology.org/
2023.findings-acl.350 (visited on 07/20/2023).

[14] Jacob Devlin. bert/multilingual.md at master · google-research/bert. en. July
2019. url: https : / / github . com / google - research / bert / blob /
master/multilingual.md (visited on 07/16/2023).

[15] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Asso-
ciates, Inc., 2017. url: https://proceedings.neurips.cc/paper_
files / paper / 2017 / file / 3f5ee243547dee91fbd053c1c4a845aa -
Paper.pdf.

[16] Sebastian Ruder et al. “XTREME-R: Towards More Challenging and Nu-
anced Multilingual Evaluation”. en. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing. Online and Punta
Cana, Dominican Republic: Association for Computational Linguistics,
2021, pp. 10215–10245. doi: 10 . 18653 / v1 / 2021 . emnlp - main . 802.
url: https://aclanthology.org/2021.emnlp-main.802 (visited on
05/18/2023).

[17] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine
Translation of Rare Words with Subword Units”. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Berlin, Germany: Association for Computational Linguistics,
Aug. 2016, pp. 1715–1725. doi: 10.18653/v1/P16-1162. url: https:
//aclanthology.org/P16-1162 (visited on 04/24/2023).

[18] Philip Gage. “A new algorithm for data compression”. In: The C Users
Journal 12.2 (Feb. 1994), pp. 23–38. issn: 0898-9788.

[19] Mike Schuster and Kaisuke Nakajima. “Japanese and Korean voice search”.
In: 2012 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). ISSN: 2379-190X. Mar. 2012, pp. 5149–5152. doi: 10.1109/
ICASSP.2012.6289079.

[20] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Pro-
cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Online: Association
for Computational Linguistics, Oct. 2020, pp. 38–45. url: https://www.
aclweb.org/anthology/2020.emnlp-demos.6.

87

https://aclanthology.org/2023.findings-acl.350
https://aclanthology.org/2023.findings-acl.350
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://aclanthology.org/2021.emnlp-main.802
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[21] Taku Kudo. “Subword Regularization: Improving Neural Network Trans-
lation Models with Multiple Subword Candidates”. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Melbourne, Australia: Association for Computational
Linguistics, July 2018, pp. 66–75. doi: 10.18653/v1/P18-1007. url:
https://aclanthology.org/P18-1007 (visited on 03/01/2023).

[22] Guillaume Lample and Alexis Conneau. Cross-lingual Language Model
Pretraining. en. arXiv:1901.07291 [cs]. Jan. 2019. url: http://arxiv.org/
abs/1901.07291 (visited on 02/04/2023).

[23] Yinhan Liu et al. “Multilingual Denoising Pre-training for Neural Machine
Translation”. In: Transactions of the Association for Computational Linguis-
tics 8 (2020). Place: Cambridge, MA Publisher: MIT Press, pp. 726–742. doi:
10.1162/tacl_a_00343. url: https://aclanthology.org/2020.
tacl-1.47 (visited on 05/14/2023).

[24] Linting Xue et al. “mT5: A Massively Multilingual Pre-trained Text-to-Text
Transformer”. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Online: Association for Computational Linguistics, June 2021,
pp. 483–498. doi: 10.18653/v1/2021.naacl-main.41. url: https:
//aclanthology.org/2021.naacl-main.41 (visited on 05/14/2023).

[25] Teven Le Scao et al. “Bloom: A 176b-parameter open-access multilingual
language model”. In: arXiv preprint arXiv:2211.05100 (2022).

[26] Xi Victoria Lin et al. “Few-shot Learning with Multilingual Generative
Language Models”. In: Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, Dec. 2022, pp. 9019–9052. url:
https : / / aclanthology . org / 2022 . emnlp - main . 616 (visited on
07/20/2023).

[27] Junjie Hu et al. “XTREME: A Massively Multilingual Multi-task Benchmark
for Evaluating Cross-lingual Generalisation”. In: Proceedings of the 37th
International Conference on Machine Learning. Ed. by Hal Daumé III and
Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,
July 2020, pp. 4411–4421. url: https://proceedings.mlr.press/v119/
hu20b.html.

[28] Hai Wang et al. “Improving Pre-Trained Multilingual Model with Vocabu-
lary Expansion”. In: Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 316–327. doi: 10.18653/v1/

88

https://doi.org/10.18653/v1/P18-1007
https://aclanthology.org/P18-1007
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://doi.org/10.1162/tacl_a_00343
https://aclanthology.org/2020.tacl-1.47
https://aclanthology.org/2020.tacl-1.47
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2022.emnlp-main.616
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/K19-1030
https://doi.org/10.18653/v1/K19-1030

K19-1030. url: https://aclanthology.org/K19-1030 (visited on
03/30/2023).

[29] JonathanH. Clark et al. “Canine: Pre-training an Efficient Tokenization-Free
Encoder for Language Representation”. en. In: Transactions of the Associ-
ation for Computational Linguistics 10 (Jan. 2022), pp. 73–91. issn: 2307-
387X. doi: 10.1162/tacl_a_00448. url: https://direct.mit.edu/
tacl/article/doi/10.1162/tacl_a_00448/109284/Canine-Pre-
training-an-Efficient-Tokenization-Free (visited on 07/16/2023).

[30] Yi Tay et al. “Charformer: Fast Character Transformers via Gradient-based
Subword Tokenization”. In: International Conference on Learning Represen-
tations. 2022. url: https://openreview.net/forum?id=JtBRnrlOEFN.

[31] Linting Xue et al. “ByT5: Towards a Token-Free Future with Pre-trained
Byte-to-Byte Models”. In: Transactions of the Association for Computational
Linguistics 10 (2022). Place: Cambridge, MA Publisher: MIT Press, pp. 291–
306. doi: 10.1162/tacl_a_00461. url: https://aclanthology.org/
2022.tacl-1.17 (visited on 07/20/2023).

[32] Sabrina J. Mielke et al. “Between words and characters: A Brief History
of Open-Vocabulary Modeling and Tokenization in NLP”. In: ArXiv (Dec.
2021). url: https://www.semanticscholar.org/paper/Between-
words - and - characters % 3A - A - Brief - History - of - in - Mielke -
Alyafeai/d617f51833860dc50d202af7f80be71304b2e994 (visited on
02/05/2023).

[33] Phillip Rust et al. “Language Modelling with Pixels”. In: The Eleventh In-
ternational Conference on Learning Representations. 2023. url: https://
openreview.net/forum?id=FkSp8VW8RjH.

[34] Elizabeth Salesky, David Etter, and Matt Post. “Robust Open-Vocabulary
Translation fromVisual Text Representations”. en. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Online
and Punta Cana, Dominican Republic: Association for Computational Lin-
guistics, 2021, pp. 7235–7252. doi: 10.18653/v1/2021.emnlp-main.576.
url: https://aclanthology.org/2021.emnlp-main.576 (visited on
07/16/2023).

[35] Elman Mansimov et al. “Towards End-to-End In-Image Neural Machine
Translation”. en. In: Proceedings of the First International Workshop on Natu-
ral Language Processing Beyond Text. Online: Association for Computational
Linguistics, 2020, pp. 70–74. doi: 10.18653/v1/2020.nlpbt-1.8. url:
https://www.aclweb.org/anthology/2020.nlpbt-1.8 (visited on
07/16/2023).

89

https://doi.org/10.18653/v1/K19-1030
https://doi.org/10.18653/v1/K19-1030
https://doi.org/10.18653/v1/K19-1030
https://aclanthology.org/K19-1030
https://doi.org/10.1162/tacl_a_00448
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00448/109284/Canine-Pre-training-an-Efficient-Tokenization-Free
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00448/109284/Canine-Pre-training-an-Efficient-Tokenization-Free
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00448/109284/Canine-Pre-training-an-Efficient-Tokenization-Free
https://openreview.net/forum?id=JtBRnrlOEFN
https://doi.org/10.1162/tacl_a_00461
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/2022.tacl-1.17
https://www.semanticscholar.org/paper/Between-words-and-characters%3A-A-Brief-History-of-in-Mielke-Alyafeai/d617f51833860dc50d202af7f80be71304b2e994
https://www.semanticscholar.org/paper/Between-words-and-characters%3A-A-Brief-History-of-in-Mielke-Alyafeai/d617f51833860dc50d202af7f80be71304b2e994
https://www.semanticscholar.org/paper/Between-words-and-characters%3A-A-Brief-History-of-in-Mielke-Alyafeai/d617f51833860dc50d202af7f80be71304b2e994
https://openreview.net/forum?id=FkSp8VW8RjH
https://openreview.net/forum?id=FkSp8VW8RjH
https://doi.org/10.18653/v1/2021.emnlp-main.576
https://aclanthology.org/2021.emnlp-main.576
https://doi.org/10.18653/v1/2020.nlpbt-1.8
https://www.aclweb.org/anthology/2020.nlpbt-1.8

[36] Guillaume Wenzek et al. “CCNet: Extracting High Quality Monolingual
Datasets from Web Crawl Data”. English. In: Proceedings of the Twelfth
Language Resources and Evaluation Conference. Marseille, France: European
Language Resources Association, May 2020, pp. 4003–4012. isbn: 979-10-
95546-34-4. url: https : / / aclanthology . org / 2020 . lrec - 1 . 494
(visited on 07/20/2023).

[37] Vilém Zouhar et al. “Tokenization and the Noiseless Channel”. In: Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Toronto, Canada: Association for Computa-
tional Linguistics, July 2023, pp. 5184–5207. url: https://aclanthology.
org/2023.acl-long.284 (visited on 07/20/2023).

[38] Shijie Wu and Mark Dredze. “Beto, Bentz, Becas: The Surprising Cross-
Lingual Effectiveness of BERT”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 833–
844. doi: 10.18653/v1/D19-1077. url: https://aclanthology.org/
D19-1077 (visited on 07/01/2023).

[39] Alexis Conneau et al. “What you can cram into a single $&!#* vector: Prob-
ing sentence embeddings for linguistic properties”. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Melbourne, Australia: Association for Computational
Linguistics, July 2018, pp. 2126–2136. doi: 10.18653/v1/P18-1198. url:
https://aclanthology.org/P18-1198 (visited on 07/03/2023).

[40] Yonatan Belinkov, Sebastian Gehrmann, and Ellie Pavlick. “Interpretability
and Analysis in Neural NLP”. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics: Tutorial Abstracts. Online:
Association for Computational Linguistics, July 2020, pp. 1–5. doi: 10.
18653/v1/2020.acl-tutorials.1. url: https://aclanthology.
org/2020.acl-tutorials.1 (visited on 07/03/2023).

[41] Terra Blevins, Hila Gonen, and Luke Zettlemoyer. “Analyzing the Mono-
and Cross-Lingual Pretraining Dynamics of Multilingual Language Mod-
els”. In: Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022, pp. 3575–3590. url: https://
aclanthology.org/2022.emnlp-main.234 (visited on 07/03/2023).

[42] Joakim Nivre et al. “Universal Dependencies v2: An Evergrowing Multilin-
gual Treebank Collection”. English. In: Proceedings of the Twelfth Language
Resources and Evaluation Conference. Marseille, France: European Language

90

https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2023.acl-long.284
https://aclanthology.org/2023.acl-long.284
https://doi.org/10.18653/v1/D19-1077
https://aclanthology.org/D19-1077
https://aclanthology.org/D19-1077
https://doi.org/10.18653/v1/P18-1198
https://aclanthology.org/P18-1198
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://aclanthology.org/2020.acl-tutorials.1
https://aclanthology.org/2020.acl-tutorials.1
https://aclanthology.org/2022.emnlp-main.234
https://aclanthology.org/2022.emnlp-main.234

Resources Association, May 2020, pp. 4034–4043. isbn: 979-10-95546-34-
4. url: https://aclanthology.org/2020.lrec-1.497 (visited on
07/20/2023).

[43] Xiaoman Pan et al. “Cross-lingual Name Tagging and Linking for 282
Languages”. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada:
Association for Computational Linguistics, July 2017, pp. 1946–1958. doi:
10.18653/v1/P17-1178. url: https://aclanthology.org/P17-1178
(visited on 07/03/2023).

[44] Afshin Rahimi, Yuan Li, and Trevor Cohn. “Massively Multilingual Transfer
for NER”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, July 2019, pp. 151–164. doi: 10.18653/v1/P19-1015. url:
https://aclanthology.org/P19-1015 (visited on 07/03/2023).

[45] Alexis Conneau et al. “XNLI: Evaluating Cross-lingual Sentence Repre-
sentations”. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium: Association for Computa-
tional Linguistics, Oct. 2018, pp. 2475–2485. doi: 10.18653/v1/D18-1269.
url: https://aclanthology.org/D18-1269 (visited on 02/04/2023).

[46] Mikel Artetxe and Holger Schwenk. “Massively Multilingual Sentence
Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond”. In: Trans-
actions of the Association for Computational Linguistics 7 (2019). Place:
Cambridge, MA Publisher: MIT Press, pp. 597–610. doi: 10.1162/tacl_
a _ 00288. url: https : / / aclanthology . org / Q19 - 1038 (visited on
07/03/2023).

[47] Harold W Kuhn. “The Hungarian method for the assignment problem”.
In: Naval research logistics quarterly 2.1-2 (1955). Publisher: Wiley Online
Library, pp. 83–97.

[48] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

91

https://aclanthology.org/2020.lrec-1.497
https://doi.org/10.18653/v1/P17-1178
https://aclanthology.org/P17-1178
https://doi.org/10.18653/v1/P19-1015
https://aclanthology.org/P19-1015
https://doi.org/10.18653/v1/D18-1269
https://aclanthology.org/D18-1269
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://aclanthology.org/Q19-1038

92

Appendix A

Sentencepiece default parameters

Parameter Name Explanation Default
model_type Model algorithm: unigram,

bpe, word, or char
”unigram”

vocab_size Vocabulary size 8000
character_coverage Character coverage to deter-

mine the minimum symbols
0.9995

input_sentence_size Maximum size of sentences
the trainer loads

0

seed_sentencepiece_size The size of seed sentence-
pieces

1000000

shrinking_factor Keeps top shrinking_factor
pieces with respect to the loss

0.75

num_sub_iterations Number of EM sub-iterations 2
max_sentencepiece_length Maximum length of sentence

piece
16

max_sentence_length Maximum length of sentence
in byte

4192

Table A.1 Default parameters for Sentencepiece training. We bold the parameters
that we modify in some of our experiments. Summarized from https://github.com/
google/sentencepiece/blob/master/doc/options.md

93

https://github.com/google/sentencepiece/blob/master/doc/options.md
https://github.com/google/sentencepiece/blob/master/doc/options.md

94

	Introduction
	Contributions

	Background
	Multilingual language models
	Subword tokenization
	Byte Pair Encoding (BPE)
	Wordpiece
	Unigram LM

	Tokenization with many languages
	Bias towards high-resource languages

	Mitigating the language bias
	Language-Clustered Vocabularies
	Determining vocabulary capacity for each language
	Combination of methods for scaling the vocabulary size
	Other tokenization approaches

	Methodology
	Data and languages
	Vocabulary size
	Data sampling
	Tokenizer metrics
	Characters per token
	Average rank
	Jensen-Shannon Divergence
	Alphabet size and out-of-vocabulary tokens

	Evaluation procedures
	Types of experiments
	Intrinsic evaluation
	Extrinsic evaluation

	Evaluation on downstream tasks
	POS
	NER
	Dependency labeling
	NLI
	Sentence Retrieval

	Implementation Details
	Model pretraining
	Model probing
	Reproducing the vocabulary balancing methods

	Tokenizer properties affect the performance of language models
	Analysis of Tokenizer Properties
	TokMix tokenizer

	Results
	Intrinsic evaluation
	Extrinsic evaluation

	Findings

	Design choices for better multilingual tokenizers
	Experiments
	Results
	Choice of implementation
	Data size
	Character coverage

	Data imbalance
	Findings

	Vocabulary balancing methods
	Experiments
	Results
	Comparison of balancing methods
	Comparison of balancing methods per language
	Comparison of balancing methods on downstream tasks

	Findings

	Conclusion
	Limitations and future work

	Bibliography
	Sentencepiece default parameters

